mooc_vs_traditional_courses_in_chemistryOn Sept 13, 2016 Ivo Leito gave a presentation Using MOOCs for teaching analytical chemistry: experience at University of Tartu at the EuCheMS 2016 Congress (Seville, Spain).

The presentation outlined the contents and organisation of the material in the on-line course Estimation of measurement uncertainty in chemical analysis, the different ways of using the on-line material (for independent learning, for self-testing, as an information source and as a basis for running as a MOOC) and the experience of running it as a MOOC (Massive Open Online Course) at University of Tartu during the three MOOC editions in 2014 to 2016. An important part of the presentation was devoted to analyzing the pros and cons of MOOCs as a way of teaching and in particular as a way of teaching analytical chemistry (or its subdisciplines). It was concluded that MOOCs do have advantages, especially if compared to short training courses for practitioners. The talk created quite some interest and discussions after the session.

Detailed discussion of this topic has been published: I. Leito, I. Helm, L. Jalukse. Anal Bioanal Chem 2015, 407, 1277–1281.
The course material is available for all interested people from https://sisu.ut.ee/measurement/

Preparation of a new MOOC course Validation of LC-MS analysis methods is currently underway by the group of analytical chemistry. The materials of the LC-MS validation course are nearing completion and are already available online.

 

EACH_and_AMS_Students_UT_2016This week was the first study week for the new Applied Measurement Science students and EACH Erasmus Mundus. Altogether 19 students started their studies. The countries of origin of the students are Vietnam, Philippines, Russia, Serbia, Kazakhstan, China, Sri Lanka, Nepal, Nigeria, Mexico, Lithuania, Tunisia, Pakistan and Greece. During the introductory meeting an overview of the programme was given (see the slides) and a large number of questions were asked and answered, accompanied by tea/coffee and cake.

We wish successful studies to all new students!

 

Asko_Laaniste_Hanno_EvardThese very important (and up to now not completely solved) questions got a lot clearer on Aug 31, 2016 as PhD dissertations addressing these topics were defended at UT Institute of Chemistry.

Asko Laaniste (left on the photo) in his thesis titled Comparison and optimisation of novel mass spectrometry ionisation sources has carried out an extensive experimental comparison of 4 different LC-MS ion sources operated altogether in 7 different modes in the analysis of 41 different pesticides. The obtained large pool of data was used for comparing the sources in terms of matrix effects, limit of detection (LoD), repeatability, linearity, signal to noise ratio (S/N) and sensitivity.

Asko demonstrated that for low levels of analytes in most cases the conventional ESI is the ion source of choice (provided the analytes are ionizable with ESI), while dopant-assisted APPI is a good alternative if low detection limits are not required and if compounds not ionizable with ESI are determined.

This is currently the most comprehensive comparison of this type available and Asko’s thesis (and the forthcoming publication) could serve as a “desk manual“ for LC-MS practitioners on choosing ion source for LC-MS analysis.

The central question of Hanno Evard’s thesis Estimating limit of detection for mass spectrometric analysis methods was: what is the best way of evaluating detection limit (LoD) of an analytical method? There are around ten widespread approaches for LoD in the literature (plus less well known ones) and the LoD values obtained using different approaches can differ by up to 10 times.

Hanno (right on the photo) carried out comprehensive analysis of the literature approaches and combined that with extensive experiments. As a result he was able to propose and convincingly justify one approach, which has merits over others and should be used for evaluation of LoD.

A two-part tutorial review on this topic is in press with the Analytica Chimica Acta journal and we expect that it will be for analytical chemists the definitive source on LoD estimation for years to come.

Hanno Evard is an alumnus of the AMS programme.

 

Our warmest congratulations to Asko and Hanno!

 

University of TartuIn a recent ranking of Eastern European and Central Asian universities by QS, one of the world’s leading compilers of university performance ratings, the University of Tartu scored a high fifth place, maintaining the highest rank among Estonian and Baltic universities.

The winner in this ranking is the Lomonosov Moscow State University, followed by Novosibirsk University, and Saint Petersburg State University. Charles University in Prague comes fourth.

The strengths of University of Tartu are its academic reputation (98/100), citations per paper (96.9/100), papers per faculty (96.2/100) and web impact (93.8/100).

The position of UT in the worldwide ranking lists has during the recent years consistently become better and UT now ranks generally among the top 500 universities in the world. According to the QS World University Ranking University of Tartu is at position 400. According to the Times Higher Education Ranking University of Tartu is in the range 351-400.

 

 

EACH_Students_at_MSC_Summer_School_2016On Friday 22.07.2016 The MSC Euromaster Summer School 2016 finished. The feedback from some of the UT participants indicates that it was again a success! They shared their experience:

 

TetianaTetiana Melnyk (Ukraine):
I want to say a big big thank you for the opportunity to go to summer school! It was a great experience, and I met a lot of new people. If you ask me to evaluate, I would say it was excellent!

SantoshSantosh Raman Acharya (Nepal):
Summer school was amazing experience for me. The most challenging and exciting part was to work with people from all over the world with different experience in their respective fields. We made a lot of presentations, lab works and audit practice in the company “Umicore”, and the most inspiring moment was to meet with Sander Sannik at the summer school. In overall it was a full package of learning with fun!

AleksandraAleksandra Lelevic (Montenegro):
I have to say that I don’t remember when I had so much fun and when I have been so tired all at the same time :-)! It was a very intensive course that brought together a very interesting group of people and I am very happy I got the opportunity to meet closely many of them. I particularly liked the practical part of the school where we had to carry out analysis ourselves and work out a way to get along and think of good solutions together as a group.

RabinRabin Neupane (Nepal):
Summer school was a perfect platform where I got challenges as a Analytical Chemist and develop an ability to cope with those challenges. I must thank Ivo for the lectures in Meteorology in Chemistry at UT, which was foundation for me to be confident and perform well in summer school. Besides lectures in summer school, I would miss the bar, friends from different corners of world, those dances and karaoke we had at end of each day in summer school. It has been a life time experience. Thank you Ivo for such an opportunity.

 

The 2017 MSC Summer school will take place in Lithuania.

 

UT_Participants_at_MSC_Summer_School_2016This week saw the start (on Mon, Jul 11, 2016) of the 9th MSC Euromaster summer school in Malle (near Antwerpen, Belgium).

As in previous years, a core aim of the Summer school is shifting the activities away from the classical lecture-type of teaching by increasing the share of discussions, hands-on work, teamwork. A key activity of the summer school is the contest of student teams (setting up virtual laboratories and interacting with customers), which tests their knowledge and skills in all areas of metrology in chemistry.

Four students from University of Tartu (EACH programme) take part in the summer school: Tetiana Melnyk, Aleksandra Lelevic, Rabin Neupane and Santosh Raman Acharya (on the photo, left to right).

We wish exciting and enjoyable Summer school to all participants!

(Photo: Irja Helm)

 

AMS_Master_Thesis_Defence_2016Today (June 06, 2016) 11 AMS master students successfully defended their master’s theses. Congratulations to all of you!

Photo on the left, from left to right: Xiaozhou Ye, Martinš Jansons, Oluwamayowa Sharon Sanni, Sylvestre Tc Pagkeu, Sofia Raquel Alves Oliveira, Stanislav Andres, Theofanis Panagiotopoulos, Max Hecht, Sagar Ramanbhai Patel, Rūta Veigure, Francis Gyakwaa.

As is usual for AMS the topics of the theses were diverse ranging from artificial photosynthesis to measurements in biochemistry and from determination of dangerous radionuclides to calibration of hygrometers. The full list of the defenders and their thesis titles is below. This list demonstrates well the ubiquitous nature of measurement science. The scientific/technological quality of the theses was high: a number of research papers are planned to be published on the basis of the theses and the results of one of them will be patented.Ruta Veigure discussing with the opponent AMS_Master_Theses_Defence_2016 (Photo on the right: Rūta Veigure discussing with the opponent)

 

Full list of students and thesis topics:

  • Sylvestre Tc Pagkeu, Joint application of an ARC-probe and antibody in homogeneous TR-FRET assay for determination of the concentration of protein kinase Pim2
  • Max Hecht, Investigations of chlorophyll interactions in Water Soluble Chlorophyll Binding Protein
  • Sofia Raquel Alves Oliveira, Role of the stringent response in antibiotic tolerance of Escherichia coli
  • Rūta Veigure, Development and validation of UHPLC-MS/MS method for analysis of sedative drugs and their metabolites in blood plasma
  • Oluwamayowa Sharon Sanni, Development and validation of gamma spectrometric analysis procedure using a high purity Germanium detector
  • Sagar Ramanbhai Patel, Development of foreign body detection methodology in industrial food preparation process
  • Theofanis Panagiotopoulos, Calibration of hygrometers at fluctuating and transient conditions
  • Francis Gyakwaa, Validation of alpha spectrometric analytical measurement procedure for the determination of Polonium-210 (210Po) in environmental samples
  • Xiaozhou Ye, Relationships between Environmental Factors and the Growth of Above-Ground Biomass in Boreal Forest
  • Martinš Jansons, Characterization of natural sedimentary dolomite and limestone reference materials from Geological Survey of Estonia using LA-ICP-MS
  • Stanislav Andres, Development of method for preliminary identification of cyclic dinucleotides in bacterial cultures

 

UT_Measurement_Uncertainty_MOOC_Participants_2016On May 17, 2016 the MOOC Estimation of measurement uncertainty in chemical analysis offered by University of Tartu finished successfully.
Alltogether 757 people registered (270 in 2014, 489 in 2015) from 85 countries. 455 participants actually started the course (i.e. tried at least one graded test at least once) and out of them 308 successfully completed the course (169 in 2015, 141 in 2014). The overall completion rate was 40% (52% in 2014, 34% in 2015). The completion rate of participants who started the studies was 67% (67% in 2014, 60% in 2015). These completion rates can be considered very good for a MOOC, especially one that has quite difficult calculation exercises, which need to be done correctly for completing the course.

The participants were very active and asked lots of questions. These were often very much to the point and addressed things that are really important to analysts in their everyday work. The course had several forums (general and by topic) and the overall number of posts to them during the course period reached beyond 500! (overall number of posts, both from participants and from teachers)

This active participation made teaching this MOOC a great experience also for us, the teachers. The discussion threads gave a lot of added value to the course and some of them triggered making important modifications to the course materials.

We want to thank all participants for helping to make this course a success!

We plan to repeat this course again in Spring 2017.

 

(Image: Wikimedia Commons)

 

UT100412AT462The series of works from the UT Analytical chemistry group on measuring and predicting ionization efficiency in the electrospray (ESI) ion source of MS and LC-MS has reached a new milestone: for the first time an ionization efficiency scale for the atmospheric pressure chemical ionization (APCI) source has been established.

The work led by Dr Riin Rebane (photo on the left) resulted in APCI ionization efficiency scale containing 40 compounds with widely ranging chemical and physical properties and spanning 5 orders of magnitude of ionization efficiency. Analysis of the resulting data challenges the common knowledge about APCI as ionization method. Contrary to the common knowledge, ionization efficiency order in the APCI source is surprisingly similar to that in the ESI source and most of the compounds that are best ionized in the APCI source are not small volatile molecules. Large tetraalkylammonium cations are a prominent example. These findings suggest that the atmospheric pressure chemical ionization mechanism can be more complex than generally assumed and most probably several ionization mechanisms operate in parallel and a mechanism not relying on evaporation of neutral molecules from droplets has significantly higher influence than commonly assumed.

See the original publication Anal. Chem. 2016, 88, 3435-3439 for more information.

(Photo: Andres Tennus)

 

Career_Seminar_EACHA key ability in today’s world is applying for a job. In order to be successful, writing CV and job application is of critical importance. For this reason these topics are included in the EACH/AMS programme.

On Wednesday 13.04.2016 Ms Heleri Olo from the UT Career service conducted a seminar (jointly for EACH and AMS students) on the “DO-s and DON’T-s” of writing a CV and motivation letter when applying for a job.

This seminar was the follow-up of the Employment/career session conducted by prof. Reiner Salzer at the EACH 2016 Winter School. At the winter school all participants were given a task to find a job offer at the RSC Jobs website and compose suitable CV and motivation letter. The CVs and motivation letters of students were then analysed both by prof. Salzer and by the UT Career service experts and the feedback was given by Heleri during the seminar.

Students found the whole exercise very useful. The employment-related session was one of the most liked sessions at the Winter school.

 

EC4LE_TrainMiCOn 9-11 June, 2016 a Master Class on Quality Assurance in Analytical Measurements, jointly organized by the European Centre for Laboratory Excellence and the TrainMiC training community.

There are still some places available, so be quick and check it out at www.ec4le.eu/program

This Master Class targets those teaching or training in the area of metrology and quality assurance in chemical analysis (Metrology in Chemictry, MiC), either regularly (as teacher) or occasionally (e.g. adult learning). The aim of the master class is to:

  • Keep up to date trainers’ technical knowledge, expertise and competence through a continuing professional development course
  • Enhance training effectiveness and efficiency by raising knowledge on adult learning strategies and active learning theories through workshop and discussion
  • Establish a long term community of practice

It will also be an opportunity for you to network with the TrainMiC® and EC4LE communities and participate in the TrainMiC® convention as well as celebrate its 15th Anniversary. You can also join to brainstorm about the future. Who knows, if you are a newcomer, you might be interested in joining one of these communities?

We look forward to seeing you in Zagreb in June 2016! We promise you an educational experience unlike any other!

 

UT_Measurement_Uncertainty_MOOC_Participants_2016On Monday, March 28, 2016 the web course “Estimation of Measurement Uncertainty in Chemical Analysis” was launched the third time as a MOOC (Massive Online Open Course).

The popularity of the course is this year somewhat higher than it was in 2014 and 2015: 744 participants from 85 countries (ranging from Bahama to Vietnam and from Zambia to Canada) have registered! (in 2014: 270 participants, in 2015: 400+) Image on the left shows the countries where the participants come from. As in the previous years, the majority of participants are from analytical laboratories, once again demonstrating the continuing need for training in measurement uncertainty estimation in analytical chemistry.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. Some developments and improvements have been made to the course material, in particular, some more self-tests ave been added. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from the University of Tartu.

It is planned to run this course as MOOC again in Spring 2017.

(Image: Wikimedia Commons)

 

Measurement_Uncertainty_MOOC_Course_UTThe third edition of the MOOC (Massive Open Online Course) Estimation of Measurement Uncertainty in Chemical Analysis will be running during Mar 28 – May 8, 2016. Registration is open!

We currently have more than 250 registered participants from more than 50 countries.

The full course material is accessible from the web page https://sisu.ut.ee/measurement/uncertainty. The course materials include videos, schemes, calculation files and numerous self-tests (among them also full-fledged measurement uncertainty calculation exercises). In order to pass the course the registered participants have to take six graded tests and get higher than 50% score. These tests are available to registered participants via the Moodle e-learning platform. Participants who successfully pass the course will get a certificate from University of Tartu.

You are welcome to distribute this message to potentially interested people!

 

EACH_Winter_School_2016_Dissolved_oxygen_intercomparisonThe second day of the EACH Winter school was full of excitement.
The key event of the second day was dissolved oxygen intercomparison between the student teams. The samples were water samples from the nearby lake Pühajärv. The student teams used optical oxygen sensors (based on luminescence), see the photo on the left. The seriousness of the intercomparison is underpinned by the independent reference values determined using the highly accurate primary Winkler titration procedure (developed by Irja Helm in her PhD thesis).
EACH_Winter_School_2016_Group_PhotoThe results of the intercomparison will be summarized at the closing of the Winter school.

On the right you can see the group photo (Lake pühajärv is behind the trees) taken right after the lunch and followed by a spontaneous snow fight (photo on the left) where the “African team” (Ime and Olivier, in the centre) performed stunningly well in comparison to the Nordic snow fighters!

EACH_Winter_School_2016_Snow_FightThe consortium committee spent most of the day interviewing students and discussing (including negotiations with university officials about maximum possible numbers of students) for distributing students to study tracks. The day ended with the long-awaited announcement that it will be possible to grant every student the preferred study track!

EACH_Winter_School_2016_Students_of_the_Uppsala_Study_trackOn the photo on the right you can see prof. Bergquist and his team taking pictures of the students selected for the Uppsala study track.

 

 

 

 

EACH_Winter_School_2016_LectureToday, on Jan 25, 2016, the first Winter School of the EACH programme started in Pühajärve (Estonia). Altogether 24 students from 17 countries participate (besides EACH students, also some other international students from Tartu have been invited, most of them from the AMS programme). Leading European analytical chemistry experts act as teachers and supervisors at the Winter School.

The Winter School offers a diverse set of activities to the participants. There are lectures on advanced analytical chemistry topics, tasks on data analysis and choosing analytical strategies. One of the sessions is specifically dedicated to employment opportunities of analytical chemists. The most ambitious part, a full-fledged in situ intercomparison measurement (between student teams) of dissolved oxygen concentration in lake water, will be carried out on the second day of the Winter School.

The intense working is counterbalanced by winter sports activities and relaxing in spa/swimming pool.

Full information about the Winter School activities is available at http://www.ut.ee/EACH/each-winter-school/

 

Random_and_Systematic_Effects_TimelineIn a recent edition of the premier journal devoted to quality and metrology in chemistry Accreditation and Quality Assurance Ivo Leito has attempted to express in very simple terms the essence of Metrology in Chemistry. In the article Accred. Qual. Assur. 2015, 20, 229–231 he arrived at three main recommendations:

1. Whenever possible, comparisons with reference values should be carried out. The reference values can be realized in different ways: Certified reference materials (CRMs), Laboratory reference materials (LRMs), Measurements with reference methods, etc.

2. Data on stable samples should be collected over long time periods (e.g. as the X chart), in order to evaluate as many sources of variability in the analysis method, as possible. The longer the time period, the more systematic effects will become random and thus easier to evaluate (more on this topic can be found in a recent review on bias).

3. “Do not stop there!”, meaning that the above mentioned activities should run in a lab on a continuous basis.

As a conclusion, it can be said that constant improvement is the key to reliable analytical results.

 

LogoWe are glad to announce that registration for the EcoBalt 2016 conference has been officially opened today! Please see the address http://www.ut.ee/akki/ecobalt-2016

The First Circular contains all the important information and is available from the above page.

EcoBalt 2016 is an international research conference that will address all scientific and technological developments in the field of environment and its protection: air, water, soil, contamination assessment and options for its reduction, environmentally friendly technologies and products, recycling, biodiversity, environmental education, etc. The conference will be held on 9.-12. October 2016 in Tartu, Estonia, in the Dorpat conference centre.

EcoBalt 2016 is organised by the Estonian Center of Analytical Chemistry. You are welcome to contact us (Dr. Riin Rebane, riin.rebane@ut.ee) with any questions or requests that you have.

 

IsoFood Hg Training_Draft Programme_2.11.2015_Page_1
During Nov 25-27, 2015 the training seminar “Quality assurance for Hg measurements in food and environmental samples” was held at the Jožef Stefan Institute in Ljubljana. Ivo Leito participated as a teacher and conducted discussion sessions Validation data (Reproducibility, recovery, etc) and their meaning, Measurement uncertainty and Traceability: what it is and how to demonstrate it?.

Ivo_Leito_teaching_metrology_in_chemistry_in_Ljubljana_Nov_2015The seminar was highly successful – there was in-depth discussion during each of the sessions and the discussions continued during coffee breaks. The measurement uncertainty session featured a full-fledged uncertainty estimation (contaminant determination by LC-MS), which the participants carried out themselves on laptop computers that they had brought with them.

It is expected that the collaboration between UT and Jožef Stefan Institute (and other research centres in the region) will continue and deepen.

 

Analuutilise_Keemia_Kvaliteedi_Infrastruktuur_ENGOn Oct 14, 2015 Tallinn University of Technology and University of Tartu jointly organized the first cooperation festival “Right time, right place” (“Õigel ajal õiges kohas”), venue: Mektory innovation centre, Tallinn).

The festival aimed first of all at intensifying collaboration between Estonian industry and academia, but also between different research teams of the two universities. The interest in the event was so large that at some point pre-registration was stopped because of too many participants. The participant number who eventually participated in the event reached 430.

The analytical chemistry research group of UT was also present at the festival and promoted the ECAC distributed interdisciplinary research infrastructure. ECAC unites the competence and analytical capabilities of three prominent organizations in Estonia: University of Tartu, Tallinn University of Technology and the Estonian Environmental Research Centre and offers access to analytical instruments as well as services and collaboration both to academia and industry. Ivo Leito made a presentation about the analytical possibilities of ECAC that can be of interest to the Industry: Analüütilise Keemia Kvaliteedi Infrastruktuur (AKKI) (in Estonian).

Signe Vahur with ATR-FT-IR Instrument at Cooperation Festival Oct 2015

Signe Vahur with ATR-FT-IR Instrument at Cooperation Festival Oct 2015

In addition, we demonstrated our FT-IR analysis capability and had a fully operational ATR-FT-IR instrument with us (image on the right), enabling any interested person to run material analysis of either the samples that we brought with us or almost anything that could be found on site. People were very interested in the analysis of wood coatings, different polymers and also of their own clothes (e.g. for determining whether a necktie is made of silk or polyester) and research fellow Signe Vahur – our main FT-IR expert – was busy all the day to record and interpret spectra and give explanations to interested people.

This possibility of instant ATR-FT-IR analysis proved to be the most popular topic in the Chemistry thematic room of the festival and attracted much attention from people with very different backgrounds. This is not surprising – this instrumental method has been in the core of a number of research collaboration projects with industry in the past and is expected to be so also in the future.

EACH and AMS students strongly benefit from the expertise and instrumentation that has been accumulated by ECAC (AKKI). Several of the EACH/AMS teachers are directly involved in ECAC and a number of ECAC’s instruments are used in teaching and thesis work.

 

Leito_Measurement_Uncertainty_MOOC_Euroanalysis_2015On Sept 07, 2015 Ivo Leito gave a presentation Using MOOCs for teaching analytical chemistry: experience at University of Tartu at the Euroanalysis XVIII (Bordeaux, France).

The presentation outlined the contents and organisation of the material in the on-line course Estimation of measurement uncertainty in chemical analysis, the ways of using it (for independent learning, for self-testing, as an information source and as a basis for running as a MOOC) and the experience of running it as a MOOC (Massive Open Online Course) at University of Tartu in spring 2014 and 2015. Part of the presentation was devoted to analyzing the pros and cons of MOOCs as a way of teaching and in particular as a way of teaching analytical chemistry (or its subdisciplines). It was concluded that MOOCs do have advantages, especially if compared to short training courses for practitioners. The talk created quite some interest and discussions after the session.

Detailed discussion of this topic has been published: I. Leito, I. Helm, L. Jalukse. Anal Bioanal Chem 2015, 407, 1277–1281.
The course material as well as the link to registration for the spring 2016 edition of the course is available from https://sisu.ut.ee/measurement/

 

css.php