Liquid chromatography tandem mass spectrometry (LC-MSMS) - the primary tool for trace contaminant analysis

Ivo Leito
University of Tartu
Institute of Chemistry
Estonia
ivo.leito@ut.ee

Outline

• Trace analysis
• How to connect LC and MS?
• Electrospray (ESI) ion source
• LC-ESI-MS
• LC-ESI-MSMS
Trace contaminant analysis

- Samples: almost never pure compounds but *(very) complex mixtures* (matrixes)
 - Food, soil, biological samples, ...

- Analytes (compounds that we determine) often at *trace level*
 - pesticides, drug residues, mycotoxins, ...

- Contents often in the range of ppm and ppb
 - $1 \text{ ppb} \equiv 1 \mu g/\text{kg} \equiv 1 \text{ mg/t}$

The central problem of trace contaminant analysis:

The analysis method has to find and reliably identify the trace analyte in the presence of a large number of main components

- Organic traces: chromatography coupled with mass spectrometry
LC-MS as analysis technique

• Combines two powerful techniques:

LC (liquid chromatograph) separates the analyte from other sample components

MS (mass spectrometer) detects and identifies the analytes and determines concentration

LC and MS: strong contrast

• LC separation is carried out in **liquid phase** (mobile phase)

• MS detection proceeds in **high vacuum** ($n \cdot 10^{-6}$ mbar)
Coupling LC and MS

- The connecting interface has to convert compounds in the liquid phase into ions in the gas phase
- Mobile phase must not get into MS
- Developing this interface has been the biggest challenge in development of LC-MS

Electrospray (ESI) ion source

- The liquid flow is dispersed by electric field into small droplets
- The analyte ions evaporate from droplets
- The ions are directed into MS entrance by the electric field

- The liquid flow is dispersed by electric field into small droplets
- The analyte ions evaporate from droplets
- The ions are directed into MS entrance by the electric field

Spraying gas (N₂)
From LC
Sprayer
Voltage ca 3500V
To Mass Spectrometer
Hot N₂ (curtain gas)

Waste
ESI in action (Positive ions)

Image by K. K. Murray (via Wikipedia)

ESI mechanism with small molecules

Polar, slightly acidified solvent, e.g. Water-MeCN (+ HCOOH)

Charged drop

B: + SH⁺ → H⁻B⁺ + S

H⁻B⁺
ESI Ionization

- The most widely applied ionization method in MS
 - Nobel prize in 2002 (Fenn, Tanaka, Wüthrich)
- Ionization via
 - Protonation
 - Deprotonation
 - Adduct formation
- Complex mechanism

LC-MS usability with different ion sources

Molecular weight

10^9
10^8
10^7
10^6
10^5
10^4
10^3
10^2

Polarity

Non-polar Medium polarity Polar Ionic

ESI APPI APCI
LC-ESI-MS: Mass-chromatogram (TIC)

- Three-dimensional data: Mass spectra can be obtained for LC peaks

ESI-MS spectrum

Sudan I
M = 248.1

\[\text{[M + H]}^+ \]

\[\text{[M + Na]}^+ \]
LC-ESI-MS: Mass-chromatogram (EIC)

- MS acts as another separation technique!

Problems with LC-ESI-MS

- ESI mass spectra are **not very characteristic**
 - ESI is soft and ions do not fragment extensively
 - Often just \([M+H]^+\)
 - The lower the analyte levels the higher the probability that some interfering compound has the same retention time and gives ions with the same m/z

- ESI mass spectra are **quite noisy**
 - High LoD values
Solution: Tandem mass spectrometry

LC-ESI-MSMS

- **MSMS workflow:**
 - The main ion (usually $[M+H]^+$) is selected
 - All other ions are ejected
 - The selected ion is excited
 - By collision with inert gas molecules
 - The ion fragments
 - By ejecting some part of the molecule
 - This is controlled by the MS software
 - Needs triple quadrupole or ion trap mass analyzer
 - Cannot be done with single quadrupole

LC-ESI-MSMS with Sudan I

- Sudan I: main transition $249 \rightarrow 232$

![Chemical structure](image)

- Now identity is confirmed in **triplicate**
 - Retention time, m/z of parent ion, m/z of fragment ion
 - For higher reliability in identification several transitions can be monitored

Journal of Chromatography A, 1160 (2007) 227–234
LC-ESI-MSMS

- Almost all quantitative trace analysis is done in the MSMS mode
 - Better signal to noise ratio
 - Couple of orders of magnitude lower LoD
 - Few μl of injected solution with few ppb concentration is sufficient
 - Reliable identification by using different transitions

LC-ESI-MSMS: standing problems

- Different ionization efficiency of different compounds
 - Also some polar compounds do not ionize well
- Dependence of ionization efficiency on co-eluting compounds – matrix effect
- Poor retention of some ionic compounds in LC

See more at:
http://tera.chem.ut.ee/~ivo/Chrom_MS/
http://tera.chem.ut.ee/~ivo/LC-MS_Matrix_Effect_Toolbox/
LC-MS vs GC-MS

LC-MS “+”
- Almost unlimited M
- No volatility needed
 - Ionic compounds OK
- Thermal stability is not needed

LC-MS “-”
- Expensive
- Not robust
- Predicting ionization is tricky

GC-MS “+”
- Better resolution
- Robust

GC-MS “-”
- Low to medium M
- Volatility needed
- Thermal stability needed

Thanks to all these people!

Thank you for your attention!