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Superpositional graphs

Ahti Peder and Mati Tombak

Abstract. The class of superpositional graphs, which is defined as the
set of graphs whose elements are generated by superposition, is a sub-
class of binary graphs. The properties of superpositional graphs are
investigated, and necessary and sufficient conditions found for a binary
graph to be a superpositional graph.

1. Preliminaries and motivation

Let us denote B = {0, 1}. A Boolean function is a mapping f : Bn → B.
In this section we are using two different formalisms for representing Boolean
functions: propositional formulae and decision diagrams.

Let x1, . . . , xn be propositional variables. Literals for variable x are x and
x̄. We denote by var(l) the variable of literal l.

Definition 1. A propositional formula on the basis {∨,&,¬} is defined
inductively as follows:

1◦ Every literal is a propositional formula.
2◦ If P and R are propositional formulae, then (P&R) and (P ∨ R) are

propositional formulae.

The priority of Boolean connectives is ∨,&,¬ (the highest priority). We
allow omitting parentheses if there is no confusion in determining the struc-
ture of subformulae. We denote the fact, that F (α1, . . . , αn) = 1 for α =
(α1, . . . , αn) ∈ Bn, by α ` F .

Definition 2. A binary graph is an oriented acyclic connected graph with
a root and two terminals (sinks) — 0 and 1. Every internal node v has
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two sucessors: high(v) and low(v). An edge a → b is a 0-edge (1-edge) if
low(a) = b (high(a) = b).

Definition 3. A path from a node u to a node v (u ; v) is a sequence of
nodes z0, . . . , zk, where z0 = u, zk = v and for each 0 ≤ i < k, zi+1 = low(zi)
or zi+1 = high(zi).

Definition 4. A binary decision diagram (BDD) over a set of variables
{x1, . . . , xn} is a binary graph, where every internal node v of G is labelled
by a literal l, where var(l) ∈ {x1, . . . , xn}.

Let D be a binary decision diagram with variables x1, . . . , xn. Every
assignment α ∈ Bn activates a path p(α) = p1, . . . , pk in D from the root to
a terminal node: if α ` label(vi), then vi+1 = high(vi) else vi+1 = low(vi).
A Boolean function fD(x1, . . . , xn), represented by D, is defined as follows:
f(α) = 1 if and only if the path activated by α points to the terminal node
1.

Binary decision diagrams were first introduced by Lee [5] as a data struc-
ture for representing Boolean functions. They were further popularized by
Akers [1] and Bryant [2]. There are many monographs and textbooks about
BDDs, for example [3].

Definition 5. Let G and E be two binary graphs. A superposition of E

into G instead of an internal node v (Gv←E) is a graph, which is obtained
by deleting v from G and redirecting all edges, pointing to v, to the root of
E, all edges of E pointing to the terminal node 1 to the node high(v) and
all edges pointing to the terminal node 0 to the node low(v).

Let A, C and D be binary graphs, whose descriptions are shown in Fig-
ure 1.
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Figure 1. Binary graphs A, C and D.

Definition 6. The class of superpositional graphs (SPG) is defined in-
ductively as follows:

1◦ The graph A ∈ SPG.
2◦ If G ∈ SPG and v is an internal node of G, then Gv←C ∈ SPG and

Gv←D ∈ SPG.
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Note that C = Av←C ∈ SPG and D = Av←D ∈ SPG. We say that
v ← C and v ← D are elementary superpositions.

Definition 7. A structurally synthesized binary decision diagram
(SSBDD) for a formula F , D(F ), is a superpositional graph, defined in-
ductively according to the structure of F :

1◦ If F is a literal l, then D(F ) is the graph A, where the root of A is
labelled by l.

2◦ If F = P&R, then D(F ) is the graph Cu←D(P ),v←D(R).
3◦ If F = P ∨R, then D(F ) is the graph Du←D(P ),v←D(R).

Binary graphs A, C and D in Figure 1 are SSBDDs for the formulae v,
u&v and u ∨ v. The formula

a&((((b ∨ c)&d) ∨ e)&f)

has the SSBDD, shown in Figure 2.
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Figure 2. The SSBDD for the formula a&((((b ∨ c)&d) ∨ e)&f).

SSBDDs were first introduced by Ubar [6] and further developed in his
doctoral thesis [7]. One of the fastest fault simulators in the world is based
on structurally synthesized binary decision diagrams (see [8], [9]).

By standard conventions we direct in the figures 1-edges from left to right
and 0-edges from up to down. In this case we can omit the labels 0 and 1
from the edges. The notions of an activated path and a Boolean function
represented by the SSBDD are similar to the case of BDDs.

The following theorem is proven in [4].

Theorem 1. A propositional formula F and its SSBDD D(F ) represent
the same Boolean function.

It is easy to see that superpositional graphs are a special case of binary
graphs: the initial graph A is a binary graph and the superposition is pre-
serving all properties in the definition of binary graphs. SSBDDs are based
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on superpositional graphs, alike BDDs are based on binary graphs. Many
properties of SSBDDs are depending on the properties of superpositional
graphs (see [4]). One of the problems, important for many applications, is:
given a BDD, is it a SSBDD?
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Figure 3. Two decision diagrams.

In Figure 3 there are two decision diagrams. Are they SSBDDs or not? It
is obvious that both of them are BDDs, because they are both binary graphs.
To determine, if the underlying graph is superpositional, we have to try to
generate these graphs according to Definition 6. This means that we should
check all possible sequences of elementary superpositions of length n − 1,
where n is the number of internal nodes of the binary graph. This method is
obviously infeasible. A better idea would be to find necessary and sufficient
graph-theoretical properties for a binary graph to be a superpositional graph.
The goal of this paper is to find just such conditions.

2. Properties of superpositional graphs

Theorem 2. If G,H ∈ SPG and v is an internal node of G, then Gv←H ∈
SPG (the class of superpositional graphs is closed under superposition).

Proof. By assumption H ∈ SPG and G ∈ SPG can be generated from
the graph A by some sequence of elementary superpositions. To show that
Gv←H ∈ SPG we generate graph G using elementary superpositions and
perform the same sequence of elementary superpositions in the internal node
v, which were implemented to get the graph H from the initial graph A. It
is easy to see that the resulting graph Gv←H is in fact a superpositional
graph. �
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Figure 4. Superpositional graphs G and E before superposition.
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Figure 5. The graph Gv←E .

Theorem 2 allows us to give an alternative definition of superpositional
graphs, which is more convenient to use in the following proofs.

Definition 8. The class SPG of graphs is defined inductively as follows:
1◦ The graphs A,C,D ∈ SPG.
2◦ If G,H ∈ SPG and v is an internal node of G, then Gv←H ∈ SPG.

The example in Figures 4 and 5 illustrates the process of finding the
superposition Gv←E .

We will prove Theorems 3, 4 and 5 using induction by the alternative
definition of superpositional graphs. The basis of induction is obvious in all
cases: all the properties hold trivially for the graphs A,C and D.

Definition 9. A 0-path (1-path) from a node u to a node v is a path,
which contains only 0-edges (1-edges).
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Theorem 3. Let G ∈ SPG. Then for every internal node u there exist
a 0-path u ; 0 and a 1-path u ; 1.

Proof. Let S = Gv←E . By induction hypothesis there exists a 0-path
u ; 0 in the graph G. If v does not belong to that 0-path u ; 0 in G,
then that 0-path remains unchanged in Gv←E . If v is on the path, then
we substitute v with the 0-path root(E) ; 0, which exists by induction
hypothesis. The proof for 1-paths is analogous. �

Definition 10. We say that a binary graph G is homogenous if only one
type of edges enters into every node v ∈ V (G).

Theorem 4. Every superpositional graph is homogenous.

Proof. Let S = Gv←E . By induction hypothesis the graphs G,E ∈ SPG

are homogenous. By the execution of superposition Gv←E , exiting edges of
the graph E were redirected and edges pointing to the node v were redirected
to the root of E. Exiting 0-edges of the graph E were redirected to the node
low(v), and since low(v) had at least one 0-edge in G (the one from v), it
remains homogenous after the substitution. The same argument works for
high(v) as well. �

Definition 11. A binary graph G is traceable if there exists a path
through all internal nodes of G (a Hamiltonian path).

A binary graph is acyclic, therefore if a Hamiltonian path exists, then it
is unique.

Theorem 5. Every superpositional graph is traceable.

Proof. Let S = Gv←E . By induction hypothesis there exists a Hamilton-
ian path u1 ; uk in the graph G and a Hamiltonian path w1 ; wl in the
graph E. The path u1 ; uk must include the node v, let ui = v. By the
definition of superposition we will obtain high(wl) = high(ui), low(wl) =
low(ui) and w1 = high(ui−1) or w1 = low(ui−1). Therefore the Hamiltonian
path in the graph S is u1, . . . , ui−1, w1, . . . , wl, ui+1, . . . , uk. �

Theorem 5 gives a canonical enumeration of the nodes of a superpositional
graph. Given the canonical enumerations of G,H ∈ SPG, we can test the
existence of an isomorphism between G and H in time O(n) (we must check
endpoints of all edges, and there are 2n edges in a binary graph with n

internal nodes).

Definition 12. We say that a binary graph G has the triangle property if
for every three internal nodes x, y and z the existence of a 1-path x ; y and
a 0-path x ; z implies the existence of either a 1-path z ; y or a 0-path
y ; z.

Theorem 6. Every superpositional graph has the triangle property.
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Proof. We prove the theorem using induction by the definition of super-
position.

Induction basis: the graphs A,C and D have the triangle property.
Induction step: Let S = Gw←H . By induction hypothesis the triangle

property holds for graphs G and H.
Let x, y and z be internal nodes of the graph S. This means that each

of them is an internal node of G or H and none of them is w. There are 8
options for choosing nodes x, y and z:

(1) x, y, z ∈ H. By induction hypothesis, the assertion holds.
(2) x, y, z ∈ G. We prove that if there exists a 0-path or a 1-path between

the nodes y and z in the graph G, then such a path exists also in the graph
Gw←H . According to Theorem 3 there exist a 0-path root(H) ; low(w)
and a 1-path root(H) ; high(w) in the graph Gw←H . It is obvious that
if some 0-path (1-path) goes through the node w, then this path goes also
through the node low(w) (high(w)). Therefore, if some 0-path y ; z goes
through the node w (hence also through the node low(w)), then a 0-path
y ; z exists also in the graph Gw←H .

Similarly, if there exists a 1-path z ; y between the nodes z and y in the
graph G, then a 1-path z ; y is also in the graph Gw←H .

(3) x, y ∈ H, z ∈ G. Since there exists a 0-path x ; z in the graph
Gw←H , there also exists a 0-path x ; low(w). According to Theorem 3
there exists a 0-path to the node 0 from each internal node of H, therefore
there exists a 0-path y ; low(w) in the graph S. Hence there exists a 0-path
y ; z in S.

(4) x ∈ H, y ∈ G, z ∈ H. Dual to the case (3).
(5) x ∈ H, y, z ∈ G. According to the definition of superposition, the

1-path x ; y goes through the node high(w) and the 0-path x ; z goes
through the node low(w). Therefore there exists a 1-path w ; y and a
0-path w ; z in the graph G. By induction hypothesis there exists a 1-path
or a 0-path between y and z in G\{w} (because G is acyclic) and hence in
S.

(6) x ∈ G, y, z ∈ H. The 1-path x ; y and 0-path x ; z must go
through the unique root of H, which is impossible because superpositional
graphs are homogenous.

(7) x ∈ G, y ∈ H, z ∈ G. Since there exists a 1-path x ; y in S, there
exists a 1-path x ; w in G. Using the triangle property for G, there is either
a 0-path w ; z or a 1-path z ; w in G. If there exists a 0-path w ; z

(hence a 0-path low(w) ; z) in the graph G and since there exists a 0-path
y ; low(w) (by Theorem 3), then there also exists a 0-path y ; z in the
graph Gw←H .

If there exists a 1-path z ; w in the graph G, then there exist a 1-path
z ; root(H) and a 1-path root(H) ; y, which gives a 1-path z ; y in the
graph Gw←H .
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(8) x, y ∈ G, z ∈ H. Dual to the case (7). �

It is easy to see that every superpositional graph is planar. We can prove
even more restrictive property of superpositional graphs.

Definition 13. For internal nodes a and b of a binary traceable graph G

we say that a precedes b (a ≺ b) if a precedes b in the Hamiltonian path of
the graph G. Also, for every internal node a, a ≺ 0 and a ≺ 1.

Definition 14. Edges vk → vp and vl → vr of a binary traceable graph
are crossing edges if vk ≺ vl ≺ vp ≺ vr .

Definition 15. We say that a binary traceable graph is strongly planar
if it has no crossing 0-edges and no crossing 1-edges.

The strong planarity has a nice graph-theoretical interpretation: if we
stretch a graph so that all nodes are in a straight line in the canonical order,
then there are no 0-edges above the line and no 1-edges below the line. If
a binary graph is strongly planar, then there are no crossing edges with the
same label in such drawing. Figure 6 depicts a superpositional graph before
and after stretching.

It is also obvious that if a binary graph is strongly planar, then it is also
planar, while the opposite does not hold in general. In Figure 7 there is
a binary graph, which is planar, but not strongly planar (as 1-edges are
crossing).
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Figure 6. A superpositional graph before and after stretching.



SUPERPOSITIONAL GRAPHS 59

0
da

0

0

0

1

b c

1

1

1

0

1

Figure 7. A planar binary graph, which is not strongly planar.

Theorem 7. A binary traceable graph G is strongly planar if and only if
G is homogenous and has the triangle property.

Proof. We prove that

(1) if G is strongly planar, then the triangle property holds in the graph
G,

(2) if G is strongly planar, then G is homogenous,
(3) if G is homogenous and has the triangle property, then G is strongly

planar.

(1) Let G be strongly planar and vi, vj and vk be three distinct internal
nodes such that there exists a 1-path vi ; vj and a 0-path vi ; vk. Let
k < j. While moving forward from the node vk using 1-edges, we will
eventually be on the 1-path vi ; vj as the 1-edges do not cross. Thus there
exists a 1-path vk ; vj. If k > j, then there analogously exists a 0-path
vj ; vk.

(2) Let G be strongly planar. We assume by contradiction that both a
0-edge and a 1-edge enter into some internal node vj . It is obvious that
one of these edges is vj−1 → vj. Let it be the 0-edge (in the case of the
1-edge, the proof is similar). Now we show, that in this case, there exist two
crossing 1-edges. Since the graph is binary, there exists a 1-edge vj−1 → vm,
where m > j, but in this case the graph G is not strongly planar as this edge
crosses the 1-edge coming into vj (see Figure 8).

vv
0

v v

1 1

j - 1i j m
. . .. . . . . . . . .

Figure 8. An illustrative figure for the proof of Theorem 7 (2).

(3) Let G be a traceable homogenous binary graph with the triangle
property. We assume by contradiction that it is not strongly planar. Suppose
that there are crossing 1-edges in G. Let i < j < k < m be indexes so that
1-edges vi → vk and vj → vm are crossing edges, where j is minimal and
i is maximal for that j, i.e., the choice of i depends on j (see Figure 9).
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Figure 9. The edges vi → vk and vj → vm are crossing.

With this we guarantee that arbitrary 1-edge beginning between the nodes
vi and vj does not cross the 1-edge vj → vm. Due to the triangle property
and acyclicity there is a 1-path vi+1 ; vk. This 1-path must contain vj

because of our choice of i, j, k and m. But then two 1-edges start from vj,
which contradicts the definition of a binary graph. �

Corollary 1. Every superpositional graph is strongly planar.

Proof. Immediate consequence of Theorems 4, 5, 6 and 7. �

3. Graph-theoretical description of superpositional graphs

The properties of superpositional graphs, proven in the previous section,
are not sufficient for a binary graph to be a superpositional graph. There
exists a binary traceable strongly planar graph (see Figure 10), which has all
the properties, but can not be generated by any sequence of superpositions.
Therefore we have to define additionally a more sophisticated property.
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Figure 10. A binary traceable strongly planar graph, which
is not a superpositional graph.

Definition 16. We say that a binary traceable graph is 1-cofinal (0-
cofinal) if all 1-edges (0-edges), starting between the endpoints of some 0-
edge (1-edge) and crossing it, are entering into the same node.

Figure 11 and Figure 12 are illustrating these notions.
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Figure 11. The situation, forbidden by 1-cofinality.
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Figure 12. The situation, forbidden by 0-cofinality.
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Figure 13. A fragment of a graph with crossing 0-edge and
1-edge.

Definition 17. A binary traceable graph is cofinal if it is 1-cofinal and
0-cofinal.

Theorem 8. Every superpositional graph is cofinal.

Proof. We prove the 1-cofinality, the proof of 0-cofinality is similar. For
the verification of 1-cofinality, it is enough to show that if there is a pair of
1-edges, starting between the endpoints of some 0-edge and crossing it, then
these 1-edges must have a common endpoint. Let us suppose that we have
a 1-cofinal superpositional graph G and a 0-edge a→ u in it. The only way
to obtain, applying superposition, two 1-edges that start between a and u

and cross a → u is to superpose a graph H instead of some b between a

and u, which is a starting point of some 1-edge, crossing a→ u (see Figure
13). All internal edges of H remain unchanged. The only new edges, which
will cross the 0-edge, are the 1-edges, which were pointing to the terminal
1 of H, but in Gb←H were redirected to w = high(b). If graphs G and H



62 AHTI PEDER AND MATI TOMBAK

are 1-cofinal, then so is Gb←H . This means that 1-cofinality is preserved by
superposition. �

Lemma 1. If G is a traceable strongly planar cofinal binary graph with
n > 2 internal nodes, then it can be represented by a superposition G =
Hw←F , where H and F are binary graphs with at least 2 internal nodes.

Proof. Let v1, . . . , vn be the canonical sequence of internal nodes of the
graph G. We are looking for a subsequence vk, vk+1, . . . , vl (k < l) such that:

(1) All incoming edges from the nodes v1, . . . , vk−1 to the nodes of the
subsequence are pointing to vk.

(2) All 1-edges from the nodes of the subsequence to the nodes vl+1, . . . ,

vn, 1 are pointing to the same node.
(3) All 0-edges from the nodes of the subsequence to the nodes vl+1, . . . ,

vn, 0 are pointing to the same node.

We construct binary graphs H and F , using the subsequence. The set
of nodes of the graph H is V (H) = {v1, . . . , vk−1, w, vl+1, . . . , vn, 0, 1}. The
edges of H are all edges of G with both endpoints in V (H); all edges, pointing
to vk will be redirected to the node w and the 1-edges (0-edges) from some
node of the subsequence to a node from the set {vl+1, . . . , vn, 0, 1} will be
replaced by a 1-edge (0-edge) in H from w to the same node. Formally,

E(H) = {(u, v) : u, v ∈ V (H) \ {w}, (u, v) ∈ E(G)} ∪

{(u,w) : u ∈ {v1, . . . , vk−1}, (u, vk) ∈ E(G)} ∪

{(w, z) : z ∈ {vl+1, . . . , vn, 0, 1},∃ik≤i≤l((vi, z) ∈ E(G))}.

The set of nodes of the graph F is V (F ) = {vk, . . . , vl, 0, 1}. The edges of
F are all edges of G with endpoints in V (F ); all 1-edges of G, going from
V (F ) to the nodes from {vl+1, . . . , vn, 1} will be redirected to the terminal
1 and all 0-edges of G, going from V (F ) to the nodes from {vl+1, . . . , vn, 0},
will be redirected to the terminal 0 of F . Formally,

E(F ) = {(u, v) : u, v ∈ V (F ), (u, v) ∈ E(G)} ∪

{(vi, 1) : vi ∈ V (F ),∃zz∈{vl+1,...,vn,1}(high(vi) = z)} ∪

{(vi, 0) : vi ∈ V (F ),∃zz∈{vl+1,...,vn,0}(low(vi) = z)}.

Obviously, the construction of graphs H and F in conditions (1)–(3) is a
reverse engineering of the notion of superposition of binary graphs. Therefore
G = Hw←F . It is left to show that on the premises of the lemma, there
always exists a subsequence of the canonical sequence of nodes of the graph
G, which satisfies conditions (1)–(3). We have to consider four cases:

1) high(v1) = 1. Then low(v1) = v2 and the sequence is v2, . . . , vn.
2) low(v1) = 0. Then high(v1) = v2 and the sequence is v2, . . . , vn.
3) high(v1) = vl+1, where 1 < l ≤ n − 1. Then low(v1) = v2 and the

sequence is v1, . . . , vl. Condition (1) is fulfilled, because v1 is the first node
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of the canonical sequence of nodes. Condition (2) is fulfilled, because if there
is some 1-edge (vi, z), where 2 ≤ i ≤ l, z ∈ {vl+2, . . . , vn, 1}, then we have
two crossing 1-edges, and G is not strongly planar. Condition (3) is fulfilled,
because if there are two 0-edges, (vi, u) and (vj , z), where 2 ≤ i < j ≤ l and
u, z ∈ {vl+2, . . . , vn, 0}, u 6= z, then G is not cofinal.

4) low(v1) = vl+1, where 1 < l ≤ n − 1. Then high(v1) = v2 and
the sequence is v1, . . . , vl. Conditions (1)–(3) are fulfilled by considerations,
symmetrical to the case 3). �

Theorem 9. A binary graph is a superpositional graph if and only if it
is a strongly planar cofinal traceable graph.

Proof. =⇒ Proved by Theorem 5, Corollary 7 and Theorem 8.
⇐= We prove the claim by induction over the number of internal nodes

of the graph.
Induction basis. There are two binary graphs with 2 internal nodes. These

are binary graphs C and D (Figure 1), which are superpositional graphs.
Induction step. Let G be a strongly planar cofinal traceable graph with n

internal nodes (n > 2). By Lemma 1, it can be represented as a superposition
of two graphs: G = Hw←F , where |V (H)| < |V (G)| and |V (F )| < |V (G)|.
The graphs H and F inherited from G the properties of traceability, strong
planarity and cofinality. By induction hypothesis H and F are superposi-
tional graphs. Graph G is a superposition of two superpositional graphs and
by Theorem 2 is a superpositional graph. �

As an illustration of an application of Theorem 9, we reproduce binary
graphs from Figure 3, stretched by the canonical ordering of nodes. The
graph, leftmost in Figure 3, is depicted in Figure 14 and the rightmost graph
in Figure 15.

It is obvious, that both of them are traceable and strongly planar. The
graph in Figure 14 is not cofinal. Nodes v and w are between the endpoints
of 1-edge u → x, but 0-edges v → z and w → y are pointing to different
nodes. According to Theorem 9, the graph is not a superpositional graph.
The graph in Figure 15 is cofinal and therefore it is a superpositional graph.
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Figure 14. Leftmost graph (from Figure 3) in canonical order.
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Figure 15. Rightmost graph (from Figure 3) in canonical order.

Acknowledgement. The authors would like to thank referee for carefully
reading the manuscript and giving his/her valuable advice and suggestions.

References

[1] S. B. Akers, Binary decision diagram, IEEE Trans. Computers, C-27 (1978), 509–516.
[2] R. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans.

Computers C-35 (1986), 677–691.
[3] R. Drechsler, B. Becker, Binary Decision Diagrams, Theory and Implementation,

Kluwer Academic Publishers, 1998.
[4] A. Jutman, A. Peder, J. Raik, M. Tombak, R. Ubar, Structurally synthesized binary

decision diagrams, 6th International Workshop on Boolean Problems, Freiberg Uni-
versity, 2004, 271–278.

[5] C. Lee, Representation of switching circuits by binary decision diagrams, Bell. Syst.
Tech. J. 38 (1959), 985–999.

[6] R. Ubar, Test generation for digital circuits using alternative graphs, Proc. Tallinn
Technical Univ. 409 (1976), 75–81. (Russian)

[7] R. Ubar, Research and Development of Testing Methods for Digital Systems. DSc

Dissertation, Institute of Electronics and Computer Science, Riga, 1986. (Russian)
[8] R. Ubar, S. Devadze, J. Raik, Ultra fast parallel fault analysis on structural BDDs,

Proceedings of the 12th IEEE European Test Symposium, IEEE press, 2007, 131–136.
[9] R. Ubar, S. Devadze, J. Raik, A. Jutman, Parallel X-fault simulation with critical

path tracing technique, Proceedings of the IEEE/ACM DATE Conference, Dresden,
Germany, 2010. (to appear)

University of Tartu, Institute of Computer Science, J. Liivi 2, 50409 Tartu,

Estonia

E-mail address: ahti.peder@ut.ee

E-mail address: mati.tombak@ut.ee


