From the matrix perturbation theory:

Let us solve the system

$$A\mathbf{x} = \mathbf{b} \tag{8}$$

where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ are given and $\mathbf{x} \in \mathbb{R}^n$ is unknown. Suppose, A is given with an error $\tilde{A} = A + \delta A$. Perturbed solution satisfies the system of linear equations

$$(A + \delta A)(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b}.$$
(9)

Theorem 5.1. Let A be nonsingular and δA be sufficiently small, such that

$$\|\delta A\|_{\infty} \|A^{-1}\|_{\infty} \le \frac{1}{2}.$$
 (10)

Then $(A + \delta A)$ is nonsingular and

$$\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \le 2\kappa(A) \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}},\tag{11}$$

where $\kappa(A) = ||A||_{\infty} ||A^{-1}||_{\infty}$ is the condition number.

Proof of the theorem.

Subtracting (8) from the system of equations (9) we get $(A + \delta A)\delta \mathbf{x} = -\delta A \mathbf{x}$. Multiplying it with expression $(A + \delta A)^{-1}$ and taking norms, we get

$$\|\delta \mathbf{x}\|_{\infty} = \| - (A + \delta A)^{-1} \, \delta A \, \mathbf{x}\|_{\infty} \le \left\{ \| (A + \delta A)^{-1} \|_{\infty} \|A\|_{\infty} \right\} \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} \|\mathbf{x}\|_{\infty}$$

To end the proof we need to show that the expression in the brackets $\{\cdot\}$ can be estimated with expression $2\kappa(A)$, or equivalently,

$$\|(A+\delta A)^{-1}\|_{\infty} \le 2\|A^{-1}\|_{\infty} .$$
(12)

To check the validity of estimation (12) we notice first, that if X is an arbitrary $n \times n$ matrix with real values satisfying the criteria $||X||_{\infty} < 1$, then $||X^n||_{\infty} \leq ||X||_{\infty}^n \to 0$ with $n \to \infty$. It follows that,

$$(I-X)(I+X+X^2+\ldots+X^n) = I - X^{n+1} \to I$$
, with $n \to \infty$.

Therefore $(I - X)^{-1} = \sum_{j=0}^{\infty} X^j$ and

$$\|(I-X)^{-1}\|_{\infty} \le \sum_{j=0}^{\infty} \|X^{j}\|_{\infty} \le \sum_{j=0}^{\infty} \|X\|_{\infty}^{j} = (1 - \|X\|_{\infty})^{-1} .$$
(13)

We can write

$$(A + \delta A) = \left[I + \delta A \ A^{-1}\right] A. \tag{14}$$

Let's take $X = -\delta A A^{-1}$. Assuming (10), $||X||_{\infty} \leq 1/2 < 1$ we can apply (13) to show that $(I + \delta A A^{-1})$ is nonsingular and

$$\|(I + \delta A A^{-1})^{-1}\|_{\infty} \le (1 - \| - \delta A A^{-1}\|_{\infty})^{-1} \le 2.$$

Therefore (14) gives that $A + \partial A$ nonsingular and

$$\|(A + \delta A)^{-1}\|_{\infty} = \|A^{-1}(I + \delta A A^{-1})^{-1}\|_{\infty} \le 2\|A^{-1}\|_{\infty}$$

and (12) follows.