From the matrix perturbation theory:

Let us solve the system

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{8}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^{n}$ are given and $\mathbf{x} \in \mathbb{R}^{n}$ is unknown. Suppose, A is given with an error $\tilde{A}=A+\delta A$. Perturbed solution satisfies the system of linear equations

$$
\begin{equation*}
(A+\delta A)(\mathbf{x}+\delta \mathbf{x})=\mathbf{b} \tag{9}
\end{equation*}
$$

Theorem 5.1. Let A be nonsingular and δA be sufficiently small, such that

$$
\begin{equation*}
\|\delta A\|_{\infty}\left\|A^{-1}\right\|_{\infty} \leq \frac{1}{2} \tag{10}
\end{equation*}
$$

Then $(A+\delta A)$ is nonsingular and

$$
\begin{equation*}
\frac{\|\delta \mathbf{x}\|_{\infty}}{\|\mathbf{x}\|_{\infty}} \leq 2 \kappa(A) \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}} \tag{11}
\end{equation*}
$$

where $\kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$ is the condition number.

Proof of the theorem.

Subtracting (8) from the system of equations (9) we get $(A+\delta A) \delta \mathbf{x}=$ $-\delta A \mathrm{x}$. Multiplying it with expression $(A+\delta A)^{-1}$ and taking norms, we get

$$
\|\delta \mathbf{x}\|_{\infty}=\left\|-(A+\delta A)^{-1} \delta A \mathbf{x}\right\|_{\infty} \leq\left\{\left\|(A+\delta A)^{-1}\right\|_{\infty}\|A\|_{\infty}\right\} \frac{\|\delta A\|_{\infty}}{\|A\|_{\infty}}\|\mathbf{x}\|_{\infty}
$$

To end the proof we need to show that the expression in the brackets $\{\cdot\}$ can be estimated with expression $2 \kappa(A)$, or equivalently,

$$
\begin{equation*}
\left\|(A+\delta A)^{-1}\right\|_{\infty} \leq 2\left\|A^{-1}\right\|_{\infty} \tag{12}
\end{equation*}
$$

To check the validity of estimation (12) we notice first, that if X is an arbitrary $n \times n$ matrix with real values satisfying the criteria $\|X\|_{\infty}<1$, then $\left\|X^{n}\right\|_{\infty} \leq\|X\|_{\infty}^{n} \rightarrow 0$ with $n \rightarrow \infty$. It follows that,

$$
(I-X)\left(I+X+X^{2}+\ldots+X^{n}\right)=I-X^{n+1} \rightarrow I, \text { with } n \rightarrow \infty .
$$

Therefore $(I-X)^{-1}=\sum_{j=0}^{\infty} X^{j}$ and

$$
\begin{equation*}
\left\|(I-X)^{-1}\right\|_{\infty} \leq \sum_{j=0}^{\infty}\left\|X^{j}\right\|_{\infty} \leq \sum_{j=0}^{\infty}\|X\|_{\infty}^{j}=\left(1-\|X\|_{\infty}\right)^{-1} \tag{13}
\end{equation*}
$$

We can write

$$
\begin{equation*}
(A+\delta A)=\left[I+\delta A A^{-1}\right] A . \tag{14}
\end{equation*}
$$

Let's take $X=-\delta A A^{-1}$. Assuming (10), $\|X\|_{\infty} \leq 1 / 2<1$ we can apply (13) to show that $\left(I+\delta A A^{-1}\right)$ is nonsingular and

$$
\left\|\left(I+\delta A A^{-1}\right)^{-1}\right\|_{\infty} \leq\left(1-\left\|-\delta A A^{-1}\right\|_{\infty}\right)^{-1} \leq 2 .
$$

Therefore (14) gives that $A+\partial A$ nonsingular and

$$
\left\|(A+\delta A)^{-1}\right\|_{\infty}=\left\|A^{-1}\left(I+\delta A A^{-1}\right)^{-1}\right\|_{\infty} \leq 2\left\|A^{-1}\right\|_{\infty}
$$

and (12) follows.

