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In Star Wars, every planet has the same acceleration due to gravity as
the Earth. Why?

How does the mass of a planet depend on its radius in that case? How to
realise this relation in practice? 1

The force of gravity between two spherical bodies is

(1) F =
Gm1m2

r2
,

where G is the gravitational constant, m1 and m2 are masses of the bodies,
and r is the distance between them.

We are interested of the acceleration due to gravity g of a planet, whose
mass is M and radius is R, on a small body with mass m.

Newton’s second law says that F = ma.
The force of gravity between the body on the surface of the planet is on

one hand

(2) F =
GMm

R2
,

on the other hand defined as

(3) F = mg.

We find that

(4) g =
GM

R2
.

If g is constant independent of the mass of the planet, then we have

(5)
M

R2
=

g

G
= const,

that is, the mass of the planet is proportional to its radius squared!
It is quite an odd result: M rather ought to be proportional to R3, but

even that assumes that the planet is of uniform density.
If mass is proportional to the square of radius, i.e. to the surface area of

the planet, it looks like the whole mass of the planet is near its surface: the
planet is hollow!

How dense must the spherical shell be? The radius of the Earh is about
RE = 6400 km and its mass ME = ×1024 kg. Its surface area is then SE =
4πR2

E
= 5× 108 km2. The mass per one square kilometre is 1016 kg, per one

square metre: 1010 kg.
If the thickness of the shell of an Earth-sized planet were 1 km, its den-

sity would be about 107 kg/m3. The average density of the Earth is about
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5500 kg/m3, almost ten thousand times less; the density of white dwarf star
matter is only 100 times larger!

The shell, even if it could be formed, would collapse under its own weight.
There is a much more realistic way to hold the acceleration due to gravity

constant: one has to change the ratio of radii of the high density iron-nickel
core and and the relatively less dense shell of a quite ordinary planet.

Let us assume that the planet with radius R has a core with radius Rc

(of course, Rc < R). Let the density of the core be ρc and the density of the
shell ρs (of course, ρs < ρc).

Then the mass M of the planet is the sum of the masses of its core and
shell:
(6)

M = Vcρc+Vsρs =
4

3
πR3

cρc+

(

4

3
πR3

−

4

3
πR3

c

)

ρs =
4

3
πR3

[

ρs + χ3(ρc − ρs)
]

,

where we have defined the ratio of radii as χ = Rc/R.
We know that for a Star Wars planet M/R2 = g/G. Thus

(7)
g

G
=

4

3
πR

[

ρs + χ3(ρc − ρs)
]

,

from where the ratio of radii of the core and and the planet (shell) is

(8) χ(R) = 3

√

−3g/G + 4πRρs

4πR(ρs − ρc)
.

Let us plot the relationship for ρs = 4000 kg/m3 and ρc = 20000 kg/m3.
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Figure 1. The ratio χ of the core and planet a function of
the radius R of the planet, if the acceleration to to gravity
on the surface of the planet is held at g.

From the figure we see that with the help of this trick, we can make
planets whose radius is as small as 1800 km or as large as 8800 km. (The
actual range is smaller, as it is a rough estimation.)

To further increase the radius of a planet, while keeping g constant, an ice
shell may be added. The density of ice is about 1000 kg/m3 (larger under a
great pressure). In this way, the 8800 km limit can be passed.


