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Probability Theory



What is a random variable?

A discrete random variable f is formally a function f : Ω → {0, 1}∗ where
Ω is a sample space that models non-deterministic behaviour. Now for each
output y there is a corresponding elementary event

Ωy = {ω ∈ Ω : f(ω) = y} ,

A probability measure Pr : F(Ω) → [0, 1] describes relative likelihood of
observable events F(Ω) = {∅, Ω0, Ω1,Ω00,Ω01, . . . , Ω0 ∪ Ω1, . . . , Ω}:

Pr [ω ∈ Ω : f(ω) ∈ Y]
.
=

∑

y∈Y

Pr [ω ∈ Ωy] ,

where by convention the probability measure is normalised

Pr [ω ∈ Ω] =
∑

y∈{0,1}∗

Pr [ω ∈ Ωy] = 1 .
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Conditional probability

Often, the presence of one event is correlated with some other events. The
corresponding influence is formally quantified by conditional probability

Pr [f(ω) = y|g(ω) = x]
.
=

Pr [f(ω) = y ∧ g(ω) = x]

Pr [g(ω) = x]

Consequently, for any two events A and B:

Pr [A ∧B] = Pr [A] · Pr [B|A] = Pr [B] · Pr [A|B] .

Two events are independent if Pr [A ∧B] = Pr [A] · Pr [B].
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Total Probability Formula

Let H1, . . . ,Hn be mutually exclusive events such that

Pr [Hi ∧Hj] = 0 and Pr [H1 ∨ . . . ∨Hn] = 1 .

Then for any any event A we can express

Pr [A] =
n∑

i=1

Pr [Hi] · Pr [A|Hi] .
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PDF and CDF. Theory

Discrete random variables do not have a classical probability density function.
Instead, we can consider probabilities of the smallest observable events
Ω0, Ω1,Ω00,Ω01, . . .. Consider the corresponding pseudo-density function

px
.
= Pr [ω ∈ Ω : f(ω) = x] .

Then we can express a cumulative distribution function

F (y) = Pr [ω ∈ Ω : f(ω) ≤ y]

in terms of pseudo-density function

F (y) =

y
∑

x=−∞

Pr [ω ∈ Ω : f(ω) = x] =

y
∑

x=−∞

px .
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PDF and CDF. Illustration
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px = Pr [ω ∈ Ω : f(ω) = x]

F (y) =

y
∑

x=−∞

px
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Expected value

The expected value of a random variable f is defined as

E [f ] =
∑

x∈{0,1}∗

x · Pr [ω ∈ Ω : f(ω) = x] =
∑

x∈{0,1}∗

px · x .

Alternatively, we can compute expected value as

E [f ] =
∞∑

y=1

Pr [ω ∈ Ω : f(ω) ≥ y]−
−1∑

y=−∞

Pr [ω ∈ Ω : f(ω) ≤ y]

=
∞∑

y=0

(1− F (y))−
−1∑

y=−∞

F (y) .
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Corresponding proof

Left area

−1∑

y=−∞

Pr [ω ∈ Ω : f(ω) ≤ y]

Right area

∞∑

y=1

Pr [ω ∈ Ω : f(ω) ≥ y]
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Markov’s inequality

For every non-negative random variable Pr [f(ω) ≥ α] ≤ E[f ]
α

.

α · Pr [f(ω) ≥ α] ≤ E [f ]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Jensen’s inequality

Let x be a random variable. Then for every convex-cup function f

E [f(x)] ≤ f(E [x])

and for every convex-cap function g

E [g(x)] ≥ g(E [x]) .

These inequalities are often used to get lower and upper bounds.
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Corresponding proof

Note that it is sufficient to give a proof for sums with two terms.

g(E [x])

E [g(x)]

E [x]
x0 x1
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Variance

Variance characterises how scattered are possible values

D [f ] = E
[
(f −E [f ])2

]
= E

[
f2

]
−E [f ]

2
.

Usually, one also needs standard deviation

σ [f ] =
√

D [f ] .

Chebyshev’s inequality assures that

Pr
[

|f(ω)−E [f ]| ≥ α · σ [f ]
]

≤
D [f ]

α2
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Proof of Chebyshev’s inequality

Let g = (f − E [f ])2. Then by definition D [f ] = E [g] and we can apply
Markov’s inequality

Pr
[
(f −E [f ])2 > α2 ·E [g]

]
≤

E [g]

α2

Pr [|f −E [f ]| > α · σ [f ]] ≤
D [f ]

α2
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Algorithms



Algorithms and strategies

A randomised function also known as strategy is a mapping

f : {0, 1}∗ × Ω→ {0, 1}∗

such that each evaluation f(x) : Ω→ {0, 1}∗ is a random variable.

A randomised algorithm A : {0, 1}∗×Ω→ {0, 1}∗ is a randomised function
that has a finite, precise and complete description:

⊲ a Boolean circuit or circuit family (hardware design),

⊲ a program for an ordinary computer (finite automaton),

⊲ a program for idealised computing device:
⋄ a program for universal Turing Machine,

⋄ a program for universal Random Access Machine.
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Universal Turing Machine

Universal Turing Machine is a Turing Machine that takes in

⋄ a program code φ,

⋄ arguments x1, . . . , xn,

⋄ randomness ω ∈ {0, 1}∗

and outputs either a single value or vector.

The cells of a random tape ω are filled by tossing a fair coin: ωi ←u {0, 1}.

Universal Turing Machine may also read dedicated network tapes:

⋄ a single read only tape for incoming messages,

⋄ a single write only tape for outgoing messages.
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Universal Random Access Machine

Universal Random Access Machine is an idealised computing device:

⊲ It has infinite number of data registers R[0],R[1], R[2], . . ..

⊲ It has infinite number of code registers C[0],C[1],C[2], . . ..

⊲ It has a program counter PC

⊲ It has a stack pointer SP

At the beginning a program is loaded form the tape to the code registers
and PC and SP is set to zero. Next the following loop is executed:

⊲ Read and interpret command at location C[PC]

⊲ Halt if C[PC] is zero.

Interpreted commands form a simple assembly-like language.
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Time-complexity

Let A be a randomised algorithm and let t(x, ω) denote the number of
elementary steps that are needed to obtain A(x, ω).

Then for each input we can define:

⊲ average running time E [t(x)],

⊲ maximal running time maxω∈Ω t(x, ω).

Similarly, for all k-bit inputs we can define:

⊲ average running time E [t] if we fix distribution over inputs x ∈ {0, 1}k,
⊲ maximal running time max

x∈{0,1}k maxω∈Ω t(x, ω).

Finally, we can consider a t-time algorithm A that is halted after t elementary
steps. The corresponding invalid output is denoted by ⊥.
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Entropy



Shannon entropy

Entropy is another measure of uncertainty for random variables. Intuitively,
it captures the minimal amount of bits that are needed on average to
describe a value of a random variable X .

Shannon entropy is defined as follows

H(X) = −
∑

x∈{0,1}∗

px · log2 px = −E [log2 Pr [X = x]]

It is straightforward but tedious to prove

0 ≤ H(X) ≤ log2 |supp(X)|

where the support of X is defined as supp(X) =
{
x ∈ {0, 1}∗ : px > 0

}
.
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Conditional of entropy

Conditional entropy is defined as follows

H(Y |X) = −EX,Y [log2 Pr [Y |X ]]

Now observe that

H(X,Y ) = −EX,Y [log2 Pr [X ∧ Y ]]

= −EX,Y [log2 Pr [X ] + log2 Pr [Y |X ]]

= −EX [log2 Pr [X ]]−EX,Y [log2 Pr [Y |X ]]

= H(X) + H(Y |X) .
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Mutual information

Recall that entropy characterises the average length of minimal description.
Now if we consider two random variables. Then we can describe them
jointly or separately. Mutual information captures the corresponding gain

I(Y : X) = H(X) + H(Y )−H(X,Y )

Evidently, mutual information between independent variables is zero:

I(Y : X) = H(X) + H(Y )−H(X)−H(Y |X)
︸ ︷︷ ︸

H(Y )

= 0 .

Similarly, if X and Y coincide then

I(Y : X) = H(X) + H(Y )−H(X)−H(Y |X)
︸ ︷︷ ︸

0

= H(X) .
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Min-entropy. Rényi entropy

Shannon entropy is not always descriptive enough for measuring uncertainty.
For example, consider security of passwords.

⊲ Obviously, we can just try the most probable password. The correspond-
ing uncertainty measure is known as min-entropy

H∞(X) = − log2 max
x∈{0,1}∗

Pr [X = x]

⊲ Often, we do not want that two persons have coinciding passwords. The
corresponding uncertainty measure is known as Rényi entropy

H2(X) = − log2 Pr [x1 ← X,x2 ← X : x1 = x2]

where x1 and x2 are independent draws from the distribution X .
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Hypothesis Testing



Standard setting

The best way to model secrecy is hypothesis testing.

s

s← S0

x← f(s)

Given x and
– description of S0

– description of f(·)

Charlie has to accept or reject

– a hypothesis H

There are several types of hypotheses:

⊲ simple hypotheses H = [s
?
= s0]

⊲ complex hypotheses H = [s
?
= s0 ∨ s

?
= s1 ∨ . . . ∨ s

?
= sk]

⊲ trivial hypotheses that always hold or never hold.
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Simple hypothesis testing

Simple hypothesis H0 and H1 always determine the distribution of the
observable variable x ← f(s). Consequently, an adversary A that can
choose between two hypothesis H0 and H1 can do two types of errors:

⊲ probability of false negatives α(A)
.
= Pr [A(x) = 1|H0]

⊲ probability of false positives β(A)
.
= Pr [A(x) = 0|H1]

The corresponding aggregate error is γ(A) = α(A) + β(A).

MTAT.07.003 Cryptology II, Theoretical Background, February 13, 2008 22



Various trade-offs

A reoccurring task in statistics is to minimise the probability of false positives
β(A) so that the probability of false negatives α(A) is bounded.

The most obvious strategy is to choose a trade-off point η and define

A(x) =







1, if Pr [x|H0] < η · Pr [x|H1]

0, if Pr [x|H0] > η · Pr [x|H1]

throw a ρ-biased coin, otherwise

Neyman-Pearson Theorem. The likelihood ratio test described above
achieves optimal β(A) for any bound α(A) ≤ α0. The aggregate error
γ(A) is minimised by choosing η = 1 and using a fair coin to break ties.
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Statistical distance

Formally, statistical distance is defined as re-scaled ℓ1-distance

sdx(H1,H1) =
1

2
·
∑

x

|Pr [x|H0]− Pr [x|H1]|

but it is straightforward to see

sdx(H0,H1) = max
A

Pr [A(x) = 0|H0]− Pr [A(x) = 0|H1] ,

sdx(H0,H1) = 1−min
A

γ(A) .
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Computational distance

Although the best likelihood ratio test minimises the aggregate error γ(A),
it is often infeasible to use it:

⊲ the description of the corresponding decision border is too complex,

⊲ it is infeasible to compute Pr [x|H0] and Pr [x|H1].

Therefore, we must consider properties of optimal t-time test algorithms
instead. The corresponding distance measure

cdt
x(H0,H1) = max

A is t-time
|Pr [A(x) = 0|H0]− Pr [A(x) = 0|H1]|

is known as computational distance. Evidently

lim
t→∞

cdt
x(H0,H1) = sdx(H0,H1) .
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