MTAT.07.003 Cryptology II
Spring 2008 / Homework 3

PRP/PRF switching lemma

1. Let \mathcal{A} be the adversary that tries to distinguish a random permutation $f:\{1,2,3\} \rightarrow\{1,2,3\}$ from a random function $f:\{1,2,3\} \rightarrow\{1,2,3\}$ according to the adaptive querying strategy depicted above. The dashed line corresponds to the decision border, where \mathcal{A} stops querying and outputs his or her guess.
(a) Compute the following probabilities

$$
\begin{aligned}
& \operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\text {all }}: \mathcal{A} \text { reaches vertex } u\right], \\
& \operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\text {all }}: \mathcal{A} \text { reaches vertex } u \wedge \neg \text { Collision }\right], \\
& \operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\text {all }}: \neg \text { Collision }\right], \\
& \operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\text {all }}: \mathcal{A} \text { reaches vertex } u \mid \neg \text { Collision }\right], \\
& \operatorname{Pr}\left[f \leftarrow \mathcal{F}_{\text {prm }}: \mathcal{A} \text { reaches vertex } u\right]
\end{aligned}
$$

for all nodes u in the decision border.
(b) Compute these probabilities for an arbitrary message space \mathcal{M} under the assumption that \mathcal{A} makes exactly q queries and conclude

$$
\operatorname{Pr}\left[\mathcal{A}=0 \mid \mathcal{F}_{\text {all }} \wedge \neg \text { Collision }\right]=\operatorname{Pr}\left[\mathcal{A}=0 \mid \mathcal{F}_{\text {prm }}\right]
$$

2. For the proof of the PRP/PRF switching lemma, consider the following games. In the game \mathcal{G}_{0}, the challenger first draws $f \leftarrow \mathcal{F}_{\text {all }}$ and then answers up to q distinct queries. In the game \mathcal{G}_{1}, the challenger draws $f \leftarrow \mathcal{F}_{\text {prm }}$ and then answers up to q distinct queries. In both games, the output is determined by the adversary \mathcal{A} who submits its final verdict.
(a) Formalise both games as short programs, where \mathcal{G} can make oracle
calls to \mathcal{A}. For example, something like

$$
\begin{aligned}
& \mathcal{G}_{0}^{\mathcal{A}} \\
& {\left[\begin{array}{l}
f \leftarrow \mathcal{F}_{\text {all }} \\
y_{0} \leftarrow \perp \\
\text { For } i \in\{1, \ldots, q\} \text { do } \\
{\left[\begin{array}{l}
x_{i} \leftarrow \mathcal{A}\left(y_{i-1}\right) \\
\text { If } x_{i}=\perp \text { then break the cycle } \\
y_{i} \leftarrow f\left(x_{i}\right)
\end{array}\right.} \\
\text { return } \mathcal{A}
\end{array}\right.}
\end{aligned}
$$

(b) Rewrite both games so that there are no references to the function f but the behaviour does not change. Denote these games by $\mathcal{G}_{2}, \mathcal{G}_{3}$.
(c) Analyse what is the probability that execution in the games \mathcal{G}_{2} and \mathcal{G}_{3} starts to diverge. Conclude $\operatorname{sd}_{\star}\left(\mathcal{G}_{2}, \mathcal{G}_{3}\right)=\operatorname{Pr}[$ Collision $]$

Hint: Note that following code fragment samples uniformly permutations

$$
\begin{aligned}
& \text { Sample } f\left(x_{i}\right) \\
& {\left[\begin{array}{l}
y_{i} \overleftarrow{\mathcal{M}} \\
\text { If } y_{i} \in\left\{y_{1}, \ldots, y_{i-1}\right\} \text { then } \\
{\left[y_{i} \overleftarrow{\sim} \mathcal{M} \backslash\left\{y_{1}, \ldots, y_{i}\right\}\right.}
\end{array}\right.}
\end{aligned}
$$

What is the probability we ever reach the if branch?
3. Let y_{1}, \ldots, y_{q} be chosen uniformly and independently from the set \mathcal{M}. Let $\operatorname{Distinct}(k)$ denote the event that y_{1}, \ldots, y_{k} are distinct. Estimate the value of $\operatorname{Pr}[\operatorname{Distinct}(k) \mid \operatorname{Distinct}(k-1)]$ and this result to prove

$$
\operatorname{Pr}[\operatorname{Distinct}(k)] \leq e^{-q(q-1) /(2|\mathcal{M}|)}
$$

How one can use this result to prove the birthday bound

$$
\operatorname{Pr}[\text { Collision } \mid q \text { queries }] \geq 0.316 \cdot \frac{q(q-1)}{|\mathcal{M}|}
$$

Hint: Note that $1-x \leq e^{-x}$.
Hint: Note that $1-e^{-x} \geq\left(1-e^{-1}\right) x$ if $x \in[0,1]$.

Computational indistinguishability

4. The IND-CPA security notion is also applicable for symmetric cryptosystems. Namely, a symmetric cryptosystem (Gen, Enc, Dec) is (t, ε)-INDCPA secure, if for any t-time adversary \mathcal{A} :

$$
\operatorname{Adv}^{\text {ind-cpa }}(\mathcal{A})=\left|\operatorname{Pr}\left[\mathcal{Q}_{0}^{\mathcal{A}}=1\right]-\operatorname{Pr}\left[\mathcal{Q}_{1}^{\mathcal{A}}=1\right]\right| \leq \varepsilon
$$

where

$$
\begin{array}{ll}
\mathcal{Q}_{0}^{\mathcal{A}} & \mathcal{Q}_{0}^{\mathcal{A}} \\
{\left[\begin{array}{ll}
\text { sk Gen } & {\left[\begin{array}{l}
\text { sk } \leftarrow \mathrm{Gen} \\
\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A}^{\mathcal{O}_{1}(\cdot)} \\
\text { return } \mathcal{A}^{\mathcal{O}_{1}(\cdot)}\left(\operatorname{Enc}_{\text {sk }}\left(m_{0}\right)\right)
\end{array}\right.}
\end{array}\right.} & {\left[\begin{array}{l}
\mathcal{A}_{1}(\cdot) \\
\text { return } \mathcal{A}^{\mathcal{O}_{1}(\cdot)}\left(\operatorname{Enc}_{\text {sk }}\left(m_{1}\right)\right)
\end{array}\right.}
\end{array}
$$

and the oracle \mathcal{O}_{1} serves encryption calls.
Estimate computational distance between following games
(a) Left-or-right games

$\mathcal{G}_{0}^{\mathcal{A}}$	$\mathcal{G}_{1}^{\mathcal{A}}$
$[\mathrm{sk} \leftarrow \mathrm{Gen}$	$[\mathrm{sk} \leftarrow \mathrm{Gen}$
For $i=1, \ldots, q$ do	For $i=1, \ldots, q$ do
$\left[\left(m_{0}^{i}, m_{1}^{i}\right) \leftarrow \mathcal{A}\right.$	$\left(m_{0}^{i}, m_{1}^{i}\right) \leftarrow \mathcal{A}$
Give $\mathrm{Enc}_{\text {sk }}\left(m_{0}^{i}\right)$ to \mathcal{A}	Give $\mathrm{Enc}_{\text {sk }}\left(m_{1}^{i}\right)$ to \mathcal{A}
return the output of \mathcal{A}	return the output of \mathcal{A}

(b) Real-or-random games

$\mathcal{G}_{0}^{\mathcal{A}}$	$\mathcal{G}_{1}^{\mathcal{A}}$
[sk \leftarrow Gen	$[\mathrm{sk} \leftarrow \mathrm{Gen}$
For $i=1, \ldots, q$ do	For $i=1, \ldots, q$ do
$\left[m^{i} \leftarrow \mathcal{A}\right.$	$\left[m_{0}^{i} \leftarrow \mathcal{A}, m_{1}^{i} \overleftarrow{\sim}\right.$
Give $\mathrm{Enc}_{\text {sk }}\left(m^{i}\right)$ to \mathcal{A}	Give $\mathrm{Enc}_{\text {sk }}\left(m_{1}^{i}\right)$ to \mathcal{A}
return the output of \mathcal{A}	return the output of \mathcal{A}

5. Show that the Goldwasser-Micali cryptosystem is IND-CPA secure if the Quadratic Residuosity Problem is hard. All necessary concepts are defined below. The proof is similar to the analysis of the ElGamal cryptosystem.
Number theory. A prime p is a Blum prime if $p \equiv 3 \bmod 4$. Let $N=p q$ where p, q are Blum primes. Then for each element $a \in \mathbb{Z}_{N}$, we
can efficiently compute the Jacobi symbol $\left(\frac{a}{n}\right)$. One can show that Jacobi symbols satisfies following equations

$$
\left(\frac{a b}{n}\right)=\left(\frac{a}{n}\right) \cdot\left(\frac{b}{n}\right) \quad \text { and } \quad\left(\frac{a^{2}}{n}\right)=1 .
$$

In the following, we also need a set

$$
J_{N}(1)=\left\{x \in \mathbb{Z}_{N}:\left(\frac{x}{n}\right)=1\right\}
$$

Finally, recall that an element b is a quadratic residue if there exists a such that $b=a^{2} \bmod N$. The set of quadratic residues is denoted by $Q R_{N}$.
Quadratic residuosity problem. Let \mathbb{P}_{n} denote uniform distribution over n-bit Blum primes. We say that the set of n-bit Blum primes is (t, ε)-secure with respect to quadratic residuosity problem if for all t-time adversaries \mathcal{A} :

$$
\operatorname{Adv}_{\mathbb{P}_{n}}^{\operatorname{qrp}}(\mathcal{A})=\left|\operatorname{Pr}\left[\mathcal{Q}_{0}^{\mathcal{A}}=1\right]-\operatorname{Pr}\left[\mathcal{Q}_{0}^{\mathcal{A}}=1\right]\right| \leq \varepsilon
$$

where

$$
\begin{array}{ll}
\mathcal{Q}_{0}^{\mathcal{A}} & \mathcal{Q}_{1}^{\mathcal{A}} \\
{\left[\begin{array}{ll}
p, q \overleftarrow{u}(n) \\
N \leftarrow p q \\
x \overleftarrow{u}\left(R_{N}\right. \\
\text { return } \mathcal{A}(x)
\end{array}\right.} & {\left[\begin{array}{l}
p, q \overleftarrow{u}(n) \\
N \leftarrow p q \\
x \overleftarrow{u} J_{N} \backslash Q R_{N} \\
\text { return } \mathcal{A}(x)
\end{array}\right.}
\end{array}
$$

Goldwasser-Micali cryptosystem.

- Key generation. Sample primes $p, q \in \mathbb{P}(n)$ and choose quadratic non-residue $y \in J_{N}(1)$ modulo $N=p q$. Set pk $=(N, y)$, sk $=(p, q)$.
- Encryption. First choose a random $x \leftarrow \mathbb{Z}_{N}^{*}$ and then compute

$$
\operatorname{Enc}_{\mathrm{pk}}(0)=x^{2} \quad \bmod N \quad \text { and } \quad \operatorname{Enc}_{\mathrm{pk}}(1)=y x^{2} \quad \bmod N .
$$

- Decryption. Output 0 if the ciphertext c is quadratic residue and 1 otherwise. The latter is easy if the factorisation of N is known.

6. Recall that a block cipher is modelled as a (t, q, ε)-pseudo-random permutation family \mathcal{F}. As such it is perfect for encrypting a single message block. To encrypt longer messages, we have to use encryption modes that can handle multiple blocks. Three most common encryption modes are following:

EcB: The electronic codebook mode uses the same permutation $f \leftarrow \mathcal{F}$ for all message blocks:

$$
\operatorname{ECB}_{f}\left(m_{1}\|\ldots\| m_{n}\right)=f\left(m_{1}\right)\|\ldots\| f\left(m_{n}\right) .
$$

- The counter encryption mode uses the permutation $f \leftarrow \mathcal{F}$ as a pseudo-random generator

$$
\operatorname{CTR}_{f}\left(m_{1}\|\ldots\| m_{n}\right)=f(1) \oplus m_{1}\|\ldots\| f(n) \oplus m_{n} .
$$

- The cipher-block chaining mode uses the permutation $f \leftarrow \mathcal{F}$ to link plaintext and ciphertexts

$$
\operatorname{CBC}_{f}\left(m_{1}\|\ldots\| m_{n}\right)=c_{1}\|\ldots\| c_{n} \quad \text { where } \quad c_{i}=f\left(m_{i} \oplus c_{i-1}\right)
$$

and c_{0} is know as initialisation vector (nonce).
Let us now analyse the security of these working modes.
(a) Show that the EcB working mode is insecure, i.e., construct a distinguisher that can distinguish $\mathrm{ECB}_{f}: \mathcal{M}^{n} \rightarrow \mathcal{M}^{n}$ from random permutation over \mathcal{M}^{n}. Is this weakness relevant in practise or not?
(b) Show that the CTR working mode is secure. More precisely, show that the sequence $f(1)\|\ldots\| f(n)$ is indistinguishable from the uniform distribution over \mathcal{M}^{n}. Conclude that CTR working mode is secure for a single encryption query. How to make it secure for many encryption queries? What are the corresponding security guarantees?
(\star) Show that the Cbc working mode is secure. Again, show that the output is indistinguishable from the uniform distribution over \mathcal{M}^{n}. How to make it secure for many encryption queries? What are the corresponding security guarantees?
(\star) We say that a cryptosystem is (t, ε)-IND-FPA (indistinguishable in fixed plaintext attacks) if for all t-time adversaries

$$
\operatorname{Adv}^{\mathrm{ind}-\mathrm{fpa}}(\mathcal{A})=\left|\operatorname{Pr}\left[\mathcal{G}_{0}^{\mathcal{A}}=1\right]-\operatorname{Pr}\left[\mathcal{G}_{1}^{\mathcal{A}}=1\right]\right| \leq \varepsilon
$$

where

$$
\begin{array}{ll}
\mathcal{G}_{0}^{\mathcal{A}} & \mathcal{G}_{1}^{\mathcal{A}} \\
{\left[\begin{array}{l}
\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A} \\
(\text { sk, pk }) \leftarrow \operatorname{Gen} \\
\text { return } \mathcal{A}\left(\operatorname{Enc}_{\text {pk }}\left(m_{0}\right)\right)
\end{array}\right.} & {\left[\begin{array}{l}
\left(m_{0}, m_{1}\right) \leftarrow \mathcal{A} \\
(\text { sk, pk }) \leftarrow \text { Gen } \\
\text { return } \mathcal{A}\left(\text { Enc }_{\text {pk }}\left(m_{1}\right)\right)
\end{array}\right.}
\end{array}
$$

Show that IND-FPA security implies that distributions ($\mathrm{pk}, \operatorname{Enc}_{\mathrm{pk}}\left(m_{0}\right)$) and ($\mathrm{pk}, \operatorname{Enc}_{\mathrm{pk}}\left(m_{1}\right)$) are computationally indistinguishable for all $m_{0}, m_{1} \in$ \mathcal{M}. Secondly, show that if there exists an efficient IND-CPA secure cryptosystem, there also exists an efficient IND-FPA secure cryptosystem that is not IND-CPA secure.

