
Oblivious Transfer

Sven Laur
swen@math.ut.ee

University of Tartu



Ideal implementation

Ideal
(

2
1

)

-OT

b x0, x1

b x0, x1

xb ∅

The protocol is always carried out between a client P1 and a sender P2.

⊲ The server P2 has a database of two elements x0, x1 ∈M.

⊲ The client P1 can fetch either x0 or x1 so that the server P2 cannot
detect which element is fetched.

⊲ The client should not learn anything more than xb. Moreover, the client
should be always aware of his or her choice b.

1



How to handle large databases?

Theorem. 1-out-of-2ℓ oblivious transfer protocol for k-bit strings can be
implemented using 1-out-of-2 oblivious transfer protocol for 2ℓ ·k-bit strings.

Simplified proof

To encode x00, . . . , x11, generate uniformly matrices Y and Z such that

x00 x01

x10 x11

= y00 y01

y10 y11

⊕ z00 z01

z10 z11

Next the client uses 1-out-of-2 oblivious transfer twice.

⊲ First, the client must fetch the correct column of Y .

⊲ Second, the client must fetch the correct row of Z.

Even a malicious client can learn only a single entry xab and he or she must
be aware of the location ab.

2



Solution to the millionaires problem

Let w1, w2 ∈ {1, . . . , n} be the total wealth of two millionaires. Then one of
them can find out who is richer and nothing more with the help of oblivious
transfer protocol. The construction was first published by Yao (1982).

⊲ The first millionaire creates an n-element table of possible answers

1 2 · · · n
w1 > 1 w1 > 2 · · · w1 > n

⊲ The second millionaire fetches the w2th entry from the table and thus
learns the value w1 > w2.

⊲ The protocol is secure only if the first millionaire behaves semi-honestly.

This construction can be generalised for all functions with small input range.

3



Multiplication ⇔ Oblivious transfer

Theorem. Given an ideal multiplication protocol, we can implement 1-out-
of-2 oblivious transfer. Given an ideal 1-out-of-2 oblivious transfer protocol
we can implement multiplication over Z2 in the semihonest model.

Clarification

⊲ Observe that xb = (1− b)x0 + bx1 and thus any multiplication protocol
that provides shares is sufficient to implement oblivious transfer.

⊲ Oblivious transfer is sufficient to implement multiplication, since the
sender can use columns of the multiplication table as the input.

Kilian proved in 1988 that zero-knowledge proofs and commitments can
be constructed using only oblivious transfer protocol. Hence, we can use
commitment and zero knowledge proofs to eliminate malicious behaviour.

4



Homomorphic Oblivious Transfer



Homomorphic encryption

A public key cryptosystem (Gen,Enc, Dec) is an additively homomorphic
cryptosystem if for any two message m1,m2 ∈M the distributions

Encpk(m1) · Encpk(m2) ≡ Encpk(m1 + m2)

coincide even if we fix a ciphertext Encpk(m1).

Multiplying a ciphertext Encpk(m) with a newly generated Encpk(0)
completely destroys all extra information besides the value m.

We can compute also crypto-compute multiplication

Encpk(m1)
m2 · Encpk(0) ≡ Encpk(m1 ·m2) .

5



Famous examples

The Goldwasser-Micali cryptosystem is additively homomorphic over Z2.

The lifted ElGamal cryptosystem is additively homomorphic over Zp

Encpk(m) = Encpk(g
m) = (gr, gmyr)

Decsk(c1, c2) = logg[Dec(c1, c2)] = logg

[

c2

cx
1

]

For obvious reason, the decryption rule Decsk(·) can be efficiently computed
for few ciphertexts or otherwise the cryptosystem would not be secure.

The Paillier cryptosystem uses lifting with together with a trapdoor that
allows us to efficiently compute discrete logarithms. The corresponding
message space is Zn where n is RSA modulus.

6



Aiello-Ishai-Reingold oblivious transfer

b x0, x1

pk, c

d0, d1

(pk, sk)← Gen

c← Encpk(b)

mb ← Decsk(db)

Halt if c /∈ C
r0, r1←u M

d0← cr0 · Encpk(x0)

d1←
(

c
Encpk(1)

)r0 · Encpk(x1)

If (Gen, Enc,Dec) be an additively homomorphic cryptosystem then

d0 ≡ Encpk(b)
r0 · Encpk(x0) ≡ Encpk(x0 + br0) ,

d1 ≡ Encpk(b− 1)r1 · Encpk(x1) ≡ Encpk

(

x1 + (b− 1)r1

)

.

If the message space has prime order then br0 has uniform distribution if
b 6= 0 and (b− 1)r1 has uniform distribution if b 6= 1.

7



Security in the semi-honest model

Lemma 1. If the cryptosystem is additively homomorphic over Zp, then for
any t-time semi-honestly corrupted receiver P∗

1
there exists t + O(1)-time

ideal world adversary P◦

1
such that the joint output distributions are identical

in the real and ideal world.

Proof

⊲ For fixed value b, the messages received by P∗

1
have the following

distribution: db = Encpk(xb) and db−1 = Encpk(m) where m←M.

⊲ Given xb from the trusted third party, we can perfectly simulate the reply
in the real world.

⊲ Since the output of P2 is ⊥ in both worlds the joint output distribution
coincides in both worlds.

�

8



Security in the semi-honest model

Lemma 2. If the cryptosystem is (t, ε)-IND-CPA secure, then for any
τ -time semi-honestly corrupted sender P∗

2
there exists (τ +O(1))-time ideal

world adversary P◦

2
such that the joint output distributions in the real and

ideal world are (t− τ, ε)-indistinguishable.

Proof

⊲ The sender receives an encryption of b that we cannot simulate, since
the trusted third party sends only ∅ to P◦

2
.

⊲ However, we can replace c with Encpk(0). Since P1 outputs mb in both
worlds then the output distributions must be (t− τ, ε)-indistinguishable.

⊲ Otherwise, we can construct a new adversary A from the participant P◦

2

and the output distinguisher B that wins the IND-CPA game.

�

9



Interpretation of the results

Semi-honest receiver can carry out only the attacks that are possible against
ideal implementation. The only benefit the receiver may gain in the real
world is a marginal O(1) speed-up compared to the ideal world.

Let us consider a specific security goal. Then any of those can be formalised
as a predicate B(·) that indicates whether P∗

2
was successful or not.

Lemma 2 indicates that is we consider specific (t − τ)-time security goals
B(·), then for any τ -time semi-honest sender P∗

2

Pr [P∗

2
wins] ≤ Pr [P◦

2
wins] + ε

where P◦

2
is (τ + O(1))-time adversary. In other words, P∗

2
can achieve only

marginal increase ε in success and a marginal O(1) speed-up.

10



Security against malicious receivers

Lemma 3. If the cryptosystem is additively homomorphic over Zp and
validity of the public key can be tested, then for any t-time maliciously
corrupted receiver P∗

1
there exists unbounded ideal world adversary P◦

1
such

that the joint output distributions are identical in the real and ideal world.

Proof

⊲ Given a valid public key pk we can always find the corresponding secret
key by looking through all valid (pk, sk) pairs.

⊲ Hence, we can decrypt c and find out the true input of P∗

1
.

⊲ If b /∈ {0, 1} then the received messages d0 and d1 are both random
encryptions. Thus we can always perfectly simulate the replies.

⊲ Other steps in the proof are analogous.

11



Interpretation of the results

Lemma 3 indicates that for each real world attack there is a matching
ideal world attack. Hence, the adversary can learn nothing that cannot be
computed form the intended output mb.

However, the participation in the real world protocol might give a huge
computational speedup compared to the ideal world.

Hence, participation in the protocol might help P∗

1
to compute intractable

functions from mb. For example, if mb is an encryption, then the protocol
might reveal the underlying message.

12



How to achieve tight security guarantees?

If the receiver proves in zero-knowledge that he knows the secret key sk
that corresponds to pk then the possible speedup becomes marginal.

⊲ We can extract secret key by rewinding ZkPoksk [(sk, pk) ∈ Gen].

⊲ The simulation becomes efficient if we learn the secret key sk.

If the sender is assumed to be semi-honest and the protocol uses the
ElGamal encryption, then we can use the Schnorr protocol.

To handle malicious senders, we must convert the corresponding sigma
protocol pokx [gx = y] to zero-knowledge proof of knowledge.

ZkPokx [gx = y] = pokx [gx = y] + coin flipping protocol

Fortunately, we can reuse the same key in many protocol instances.

13



Security against malicious senders

To handle a malicious sender, we must extract x0 and x1 from P∗

2
.

⊲ We can add zero-knowledge proofs of knowledge

ZkPokx0,x1
[d0(x0, x1) and d1(x0, x1) are correctly formed]

and then we can construct the necessary simulator.

⊲ One possibility is to commit x0 and x1 and then execute

ZkPokx0,x1
[commitments are properly formed]

and then continue with the certified computation protocol.

As a result, we get a protocol with enormous computational overhead.

14



Output consistency

Trusted
Third
Party

H
Halting

conditions

x0, x1

0/1

b x0, x1

b x0, x1

xb

∅

If the sender first commits pairs (0, x0) and (1, x1) and the oblivious transfer
protocol is used to reveal the corresponding decommitment strings, then
the malicious sender cannot alter the outputs without getting caught.

⇒ The sender can still cause selective halting.

⇒ Cheating behaviour is detectable with high probability.

⇒ Public complaints reveal information about receiver inputs.

15



Complete security vs output consistency

Both security levels reveal cheating with high probability:

⊲ Complete security makes all deviations from the protocol that could alter
the outcome for some receiver input detectable.

⊲ Output consistency makes all deviations from the protocol that alter the
output for this particular receiver input detectable.

Complete security has large computational overhead

⊲ Certified computations require extensive amount of extra steps

Output-consistent computations have moderate computational overhead

⊲ Commitments are relatively easy to compute.

⊲ Selective halting can cause privacy issues.

16



Bellare-Micali Protocol



Vanilla protocol

b x0, x1

pk

pk0, pk1

d0, d1

(pkb, skb)← Gen

pk1−b ← pk · pk−1
b

mb ← Decskb
(db)

(pk, sk)← Gen

Halt if pk0 · pk1 6= pk

d0← Encpk0(x0)

d1← Encpk1(x1)

The protocol works under the assumption that all possible public keys form
a group and the distribution of public keys is uniform.

⊲ The ElGamal cryptosystem has such public key space.

⊲ Since the public key pk
1−b is with correct distribution the corresponding

ciphertext d1−b is undecipherable.

⊲ The protocol can tolerate unbounded senders.

17



Security in the semi-honest model

Lemma. If the public keys are uniformly distributed over some group, then
for any t-time semi-honestly corrupted sender P∗

2
there exists t + O(1)-time

ideal world adversary P◦

2
such that the joint output distributions are identical

in the real and ideal world.

Proof

⊲ In the simulator, we can first compute public keys (pk
0
, sk0)← Gen and

(pk
1
, sk1)← Gen and then set the final key pk← pk

0
· pk

1
.

⊲ As a result, we can decrypt d0 and d1 and send the corresponding
messages x0 and x1 to trusted third party.

⊲ The simulation is perfect.

18



Security in the semi-honest model

Lemma. If the public keys are uniformly distributed over some group and the
cryptosystem is (t, ε)-IND-CPA secure, then for any τ -time semi-honestly
corrupted receiver P∗

1
there exists τ + O(1)-time ideal world adversary P◦

1

such that the joint output distributions in the real and ideal world are
(t− τ, ε)-indistinguishable.

Proof

⊲ We can simulate the reply db with Encpkb
(xb) and d1−b← Encpk1−b

(0).

⊲ As pk
1−b can be taken from the IND-CPA game and the message pk

defined as pk ← pk
0
· pk

1
, any distinguisher B together with P∗

1
form a

successful IND-CPA adversary.

�

19



How to strengthen the protocol?

Security against malicious receivers:

⊲ Sigma protocol that proves that P1 knows one secret key skb is sufficient.

⊲ If the protocol uses the ElGamal encryption, then we can use Schnorr
protocol to prove poksk

[

gsk = pk
0
∨ gsk = pk

1

]

.

Security against malicious senders:

⊲ If we do not care about efficiency, random generation of tuples (α, β, γ)
until β coincides with the reply of P∗

2
provides a perfect simulation.

⊲ Alternatively, we can use a sigma protocol with a high knowledge error
and many rounds to get efficient simulator for P∗

2
.

⊲ If we use the protocol as a sub-task in more complex protocol, then we
must use certified computations to guarantee that inputs x0 and x1 are
consistent with previous computations.

20


