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1. I n t r o d u c t i o n  

Protocols  which allow an asynchronous network of pro- 

cessors to agree on a r andom (unbiased) bit  are proposed 

in [1] and [4]. It  is claimed tha t  (assuming a t rapdoor  

funct ion exists), if less than  half  of the processors are 

faulty then  the  correct  processors will still agree on a bit  

whose bias is negligibly small  (when the running t ime of 

the processors is poly(n) the  bias is smaller  than  O(~r)  

for all k). If half  the processors are faulty then  these 

protocols  are no longer effective: the bits ou tpu t  by the 

correct  processors may be heavily biased. 

We prove tha t  the above protocols are opt imal  in the 

sense tha t  no protocol  exists which tolerates faults in at 

least half  of the  processors. The  result  is very general 

because few restr ict ions are made  on the types of com- 

municat ion  allowed between correct processors (such as 

pr ivate  channels and global channels) and the correct  pro- 

cessors only need to agree on a bit  in a weak probabil ist ic 

sense. Also, the  faulty processors do not  require very 

much power. They  can privately communicate  wi th  each 

other  but  they cannot  read messages which are exchanged 

pr ivately between two correct  processors. 

An interest ing instance of the problem arises when 

the number  of processors is fixed at two and one of t hem 
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may be faulty. This  is the so-called coin flipping by tele- 

phone prob lem which is proposed in [3] and cannot  be 

solved wi th  very high security. There  are protocols  for 

2-processor coin tossing which (assuming tha t  a t r apdoor  

funct ion exists) achieve a weaker level of security (these 

are discussed in section 4). The  processors run  in poly(n) 

t ime and the bias of the  bit  which a correct  processor out-  

puts  is less than  O(~r)  for some fixed k. More precisely, 

the  bias will be less than  O ( ~ )  where r is the  number  

of rounds of communica t ion  in the  protocol.  For many 

applicat ions (such as secret exchanging [5]) this weaker 

level of security is sufficient. In section 2 it is proven tha t  

no 2-processor protocol  exists for which the  bias of the 

ou tpu t  of a correct  processor is less than  O(~). 

In [4] it is pointed out  tha t  mult iprocessor  coin toss- 

ing schemes have their  applicat ion in the problem of ran- 

domly choosing a leader in a network of processors and 

the p rob lem of fairly al locating resources wi th in  a net-  

WOrk. 

2. 2 - P r o c e s s o r  C o i n  T o s s i n g  S c h e m e s  

In 2.1, 2-Processor coin tossing schemes are defined 

precisely and,  in 2.2, a lower bound  on the security of 

2-processor coin tossing schemes is proven. 

2 . 1  D e f i n i t i o n s  

A Z-processor bit selection scheme is a sequence of 

pairs of processors { (A",  B n) }~,~=1 with  the following prop- 

erties. For each n, An and B '~ each have access to a pri- 

vate  supply of r a n d o m  bits and they can communica te  

wi th  each other.  If the  sys tem is executed then  A '~, B "  

will ou tpu t  bits a, b (respectively) wi th in  poly(n) t ime. 
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Withou t  any loss of generality, it can be assumed tha t  

the opera t ion  of the  system consists of r(n) rounds (for 

some poly (n) bounded  function r), where a round consists 

of the following events. A" performs some computa t ions  

(in poly(n) t ime) and then sends a message to B "  and 

then  B n performs some computa t ions  (in poly(n) t ime) 

and sends a message to A".  

More formally, a processor can be viewed as a sequence 

of r(n)  + 1 circuits,  each of which is poly(n) bounded in 

size. The  first r (n)  circuits s imulate the bevavour of the 

processor at the  r(n) rounds and the last circuit  outputs  

the bit  which the processor selects. Outputs  of the first 

r(n) circuits are s ta te  information and messages to the 

o ther  processor.  Inputs  to the circuits are r andom bits,  

s ta te  informat ion f rom previous rounds or messages f rom 

the other  processor.  

ra~do~ ml~etawl 

roa~d 1 

ro~vla 
2 

A 2-round, 2-processor bit 

selection scheme and its 
circuit  representat ion.  

For a 2-processor bit  selection scheme to qualify as a 

coin tossing scheme, the bits tha t  the two processors select 

should be in agreement  and they should be random. 

A s t rong definition of agreement  would be the condi- 

t ion that ,  when the bit  selection scheme is run,  a = b. 

It may be sufficient for some purposes to adopt  a weaker 

definition of agreement  such as Pr[a = b] _> 1 - O(~r) 

for all k. Define a 2-processor bit  selection scheme to be 

1 a-consistent (where e > 0) if Pr[a -~ b] > ~ + E. Note tha t  

e-consistency is a considerably weaker proper ty  than  the  

two definitions of agreement  proposed above. 

Randomness  could be defined as the proper ty  tha t  a 

and b have a bias of zero, where the bias of a bit  x is 

defined as [Pr[z  = 0] - }1 (and the bias towards 0 of 

bit  x is defined as Pr[x = 0 ] -  ½ (the bias towards 1 is 

defined similarly)).  Again,  it may suffice to have a weaker 

definition of randomness  such as the  condit ion tha t  the  

bias of bo th  a and b be bounded  by O ( ~ )  for all k. The  

definition of security, which is given below, implies this 

second randomness  condition.  

Clearly, if one of the  two processors is faulty then it 

is unrealist ic to expect  agreement  since the faulty proces- 

sor could ou tpu t  a bit  which the correct processor knows 

nothing about .  It  is desirable, however, for the ou tpu t  

of the correct processor to still be random. Define a 2- 

processor bit  selection scheme {(A n, Bn)}~°=, to be secure 

if, for any polynomial  p, there  exists a function f ,  wi th  

f(n) < O(~r)  for all k such tha t  the following holds. For 

all n, if one of A n, B "  is replaced by a faulty processor 

which runs in t ime p(n) then the  bias of the ou tput  of the  

o ther  processor is less than  f(n). Thus,  as n gets large, 

no faulty processor of leasable running t ime can inflict 

a significant bias on the  ou tpu t  of the  other  processor. 

Note tha t  security is defined in such a way tha t  the se- 

curi ty condi t ion implies the second randomness  condit ion 

proposed in the  previous paragraph.  

2.2 Impossibil ity Result  

Theorem: If {(A n, B")}~'= 1 is an e-consistent, 2-processor 

bit  selection scheme then {(A '~, Bn)}~°= 1 is not  secure. In 

fact, for each n, there exists a faulty processor which 

causes the bias of the ou tpu t  of the correct processor to 

be at least 4~(~+t, where r(n) is the number  of rounds of 

communica t ion  of the  scheme. 

P r o o f :  We say tha t  a processor quits at round i if, f rom 

round i onwards,  all the  messages tha t  the processor sends 

are strings of zeroes. If, say, B ~ quits at some round i in 

the  middle  of the  protocol  then  A n will still ou tpu t  some 

bit  ~ which we shall refer to as a default output .  Note tha t  

A n could always compute  and store ~ at the beginning of 
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r o u n d  i before receiving any messages  f rom B n in r o u n d  

i (bu t  A n canno t ,  in general ,  c o m p u t e  h before r o u n d  i). 

For i E {1 ,2  .. . . .  r ( n ) } ,  let a~ be  the  defaul t  o u t p u t  of A n 

if B n qui ts  a t  r o u n d  i a n d  let  ar(n)+l b e  the  o u t p u t  of 

A n if B n does n o t  qui t  du r ing  the  protocol .  Also, for 

i e {0, 1, ..., r(n) - 1}, let bi be  the  defaul t  o u t p u t  of B n 

if A n qui ts  t he  pro tocol  a t  r o u n d  i + 1 a n d  let  b,(n) be t he  

o u t p u t  of B n if A n does no t  qui t  du r ing  t he  protocol .  Note  

t h a t  A n a n d  B n can  c o m p u t e  b i t s  a~ and  b~ (respectively) 

before  t hey  send  the i r  message  in r o u n d  i. 

A 

ro~v~d ~ " 

ro~ol z { ~ 
round r(n) I~j ~. 

• • 

B 
bo 

b, 

~r~) 

T h e  defaul t  o u t p u t s  are m a r k e d  a t  t he  po in t  in 
t he  p ro toco l  where  they  can  be  compu ted .  

w 

We now define 4 r (n )  + 1 fau l ty  processors:  A n, A~0, 

A2%, ..., A,~n)o, A~i, A~i, ..., A,~(n)i, Bro, B2~o, ..., BAn)0, B S ,  

B~x , ..., B~(n) 1. We shal l  even tua l ly  show t h a t  a t  least  one 

of these  processors  biases the  o u t p u t  of t he  correc t  pro-  

cessor by  a t  least  ~ Fau l ty  processor  ~i n is very  

s imple.  ~i n always qui t s  a t  r o u n d  1. T h e  o u t p u t  of B n 

w h e n  (~ ln ,B  n) is r u n  will be  b0 so ~l n biases the  o u t p u t  

of B n by  

1 
max{Pr[b0 = 0],Pr[b0 -- 1]} 2" 

For each i E {1, 2, ..., r ( n ) } ,  fau l ty  processors  A~0 , Ai'~, B,'~, 

B ~  ope ra t e  as follows. 

AT0: 

A~: 

Br0: 

B~: 

s i m u l a t e  A n f o r  r o u n d s  1 ,2 , . . . , i  - 1 

c o m p u t e  a~ 

i f  a~ = 0 t h e n  

s i m u l a t e  A n f o r  r o u n d  i 

q u i t  a t  r o u n d  i + 1 

e l s e  

q u i t  a t  r o u n d  i 

s i m u l a t e  A n f o r  r o u n d s  1,2,  . . . , i  - 1 

c o m p u t e  al 

i f  ~ = 1 t h e n  

s i m u l a t e  A ~ f o r  r o u n d  i 

q u i t  a t  r o u n d  i + 1 

e l s e  

q u i t  a t  r o u n d  i 

s i m u l a t e  B n f o r  r o u n d s  1, 2, ..., i - 1 

c o m p u t e  b~ 

i f  bl = 0 t h e n  

s i m u l a t e  B n f o r  r o u n d  i 

q u i t  a t  r o u n d  i + 1 

e l s e  

q u i t  a t  r o u n d  i 

s i m u l a t e  B n f o r  r o u n d s  1, 2, ..., i -  1 

c o m p u t e  b~ 

i f b i = l  t h e n  

s i m u l a t e  B n f o r  r o u n d  i 

q u i t  a t  r o u n d  i + 1 

e l s e  

q u i t  a t  r o u n d  i 

Since A n a n d  B n r u n  in poly(n) t ime,  so do all these  

fau l ty  processors .  

T h e  bias  towards  0 of t he  o u t p u t  of B n w h e n  (A~0 , B n) 

is r u n  is 

1 
Pr[a ,  = 0 A b, = 0] + Fr[a~ = 1 A bi_ 1 : 0] 2" 

The,  b ias  towards  1 of the  o u t p u t  of B n w h e n  (A~i , B n) 

is r u n  is 

1 
Pr[a ,  = 1 A b, = 11 + Pr[a~ = 0 A b,-1 = 11 2" 
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The  bias towards 0 of the ou tpu t  of A n when (A n, B~o ) 

is run  is 

1 
Pr[b, = 0 A a,+l = 0] + Pr[b, = 1 A a/ : 0] 

2" 

The  bias towards 1 of the ou tpu t  of A n when (A n, B~)  

is run  is 

1 
Pr[b, = 1 A a/+ 1 = 1] + Pr[b~ = 0 A a, = 1] 

2" 

Let A be the  average of these 4r(n) + 1 biases. Then  

1 
1 max{Pr[bo -- 0], Pr[bo -- 1]} 2 

= 4 r ( n )  +------i 

,(n) 1 
+ ~ ( P r I a ,  = 0Abl = 0 l + P r [ ~  = 1Abi-1 = 0 ] -  5 

i = l  

1 
+ P r [ a ,  = 1Abi = l ]+Pr[a~ = OAb,-x = 1 ] -  5 

1 
+Pr [b ,  = 0Aai+x = 0]+Pr[b,  = 1Aa, = 0 ] - -2  

1 3  
+ Pr[b, = 1Aa,+, = 1]-I-Pr[b,-- 0Aa~ = 1]--2) j . 

The  above equat ion reduces to 

e A > - -  
- 4 r ( n )  + 1 

because 

Pr[a, = 0Ab~ = 0]+Pr [a ,  = 0Ab, = l l + P r [ a  , = lAb,  = 0] 

+ P r [ a ,  = 1 A b~ = 1] = 1 

for i E {1, 2, ..., r(n) -- 1} and 

1 
Pr[ar(n)+l : br(n)] ~ ~ "k- ~- 

and 

Pr[al  = bo] = Pr[al  = 0] Pr[bo = 0] + Pr[al  = 1] Pr[bo = 1] 

< max{Pr[bo = 0], Pr[bo = 1]}. 

The  second equat ion follows from the fact tha t  the  

scheme is c-consistent and the th i rd  equat ion follows f rom 

the fact tha t  al  and b0 can be computed  before any infor- 

mat ion  is exchanged between A n and B n so they must  be 

independent  r andom variables. 

Since the  average of the  4r(n) + 1 biases is ~ ( ~ ,  at 

least one of t hem must  be greater  than  or equal to ~ ( ~  

so the  theorem is proved. 

3. M u l t i p r o c e s s o r  C o i n  T o s s i n g  S c h e m e s  

In 3.1, a general izat ion of a 2-processor bit  selection 

scheme to a bit  selection scheme which contains an arbi- 

t rary  number  of processors is made.  In 3.2, it is proven 

tha t  a mult iprocessor coin tossing scheme cannot  be very 

secure if half  its processors are faulty. 

3 .1  D e f i n i t i o n s  

Let  s be a polynomial ly bounded  function (Some in- 

terest ing cases are when s(n) is constant  or s(n) = n). 

Define an s-processor bit selection scheme as a sequence 

of tuples of processors of the form {(P~, P~,  ..., P~,))}~=I 

wi th  the  following propert ies.  For each n, P~,  P~,  ..., 

P in)  are processors which have access to a private supply 

of r a n d o m  bits and which can communica te  wi th  each 

other.  Also, each processor,  P~,  will ou tpu t  a bit ,  b~, 

wi thin  poly(n) t ime,  when the  system is executed. The  

communica t ion  between the processors is of a very gen- 

eral form. The  network contains c(n) channels,  where e 

is a poly(n) bounded  function. Each channel is shared by 

some subset  of the s(n) processors. Thus,  the network 

could consist only of one global communica t ion  channel  

or it could consist of a channel for each pair  of processors 

(in o ther  words it could suppor t  only private communica-  

tion).  Wi thou t  any loss of generality, the system operates  

in rounds as follows. P~ performs some computa t ions  (in 

poly(n) t ime) and then sends a message to each channel 

which it has access to. T h e n  P~,  P~,  ..., P~,)  each in tu rn  

do the same thing. 

As in the  case of 2-processor bit  selection schemes, 

each processor can be formalized as a sequence of r(n) + 1 

circuits which are poly(n) bounded  in size. These cir- 

cuits s imulate  the behaviour  of the processor at different 

rounds.  
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A 2-round,  3-processor bit  selection scheme wi th  
2 communica t ion  channels and its circuit  repre- 
sentat ion.  

An 8-processor bit selection scheme is e-consistent it, 

for all n, Pr[bi = bj] _> ~ + e for all 1 _< i , j  < s(n). 

Let t be a poly(n) bounded  function. An s-processor 

bit  selection scheme is t-secure if for any polynomial ,  p, 

there  exists a funct ion f ,  wi th  f(n) _< O(n~ 1 ) for all k 

such tha t  the following holds. For all n, if not  more than  

t(n) of the processors P~, P~, ..., P,]n) are replaced by 

faulty processors whose running time is bounded by p(n) 

then the bias of the output of all correct processors is 

less than f(n). The faulty processors are given a private 

communication channel (if one does not already exist for 

the processors that they replace) but the communication 

system is not altered in any other way. Faulty processors 

cannot read messages transmitted on channels which they 

do not belong to. 

3.2 Imposslbiltly Result 

T h e o r e m :  I f  {(Pf, Pf . . . . .  e~n)) }~=1 is an c-consistent, 

.s-processor bit  selection scheme then  it is not  [hi-secure.  

T h a t  is, half  the  processors,  if faulty, can bias the  ou tpu t  

of one of the  o ther  processors significantly. Specifically, 

for each n, there  exists a set of [~11  or [~_~1] proces- 

sors which, if faulty, can bias the ou tpu t  of one of the  

correct  processors by at least 4,(nlr(n}c(n)+l' where r(n) is 

the  number  of rounds of communica t ion  and e(n) is the 

number  of communica t ion  channels in the network. 

P r o o f :  For each n, par t i t ion  the s(n) processors into two 

sets, one containing [.~1] processors and the  other  con- 

ta ining [ - ~ J  processors. It  is possible to simulate the  

opera t ion  of this scheme by two processors, A n and B n 

(which each run  in poly(n) t ime) where A n simulates all 

the  processors in the first set and B n simulates all the  

processors in the second set. A n and B n communica te  

wi th  each other  to s imulate  the exchanges of messages be- 

tween processors in different sets. The  number  of rounds 

of communica t ion  tha t  occur between A n and B n dur ing 

the  s imulat ion is bounded  by r(n)8(n)c(n). Therefore,  by 

the  theorem in section 2.2, for each n, there  exists ei ther 

a faulty A n or B n which can bias the  ou tpu t  of one of 

the bits of the  o ther  processor by at least 
4r(n),(n)c(n)+l " 

The algorithm of the faulty processor can always be im- 

plemented within the processors that it simulates if these 

processors have a private communication channel. This 

completes the proof of the theorem. 

4. Some Positive Results 

If a trapdoor function, F, exists then it is possible 

to construct an r-round, 2-processor bit selection scheme, 

{ ( An, Bn)},~I, for which all correct processors always out- 
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put the same bit,  which satisfies the following weak secu- 

rity condition. For any polynomial p, there exists w > 0 

such that  if, for some n, one of the processors A", B n is 

replaced by a faulty one which runs in time pin) then the 

bias of the bit  output  by the other processor is bounded 
~o 

by v / ~ .  
{(A n, Bn)}~=l operates as follows. B n initially gener- 

ates r(n) random public/private key pairs (K1, T1), 

(K2, Tz),..., (KKn), TKn)) and selects r(n) random bits Xl, 

Xz,...,xKn } and sends the public keys Kx, Ks, . . . ,  KKn ) 

and the encryptions FK, (Xl), FK 2 (x2) ..... FK,¢,) (x~(,)) to 

A n. During round i, A n randomly chooses a bit yi and 

sends it to B n and then B n sends the private key Ti to 

A n. Finally, A n and B n each output the majority of 

(Xl @ yl,x2 @ y2,...,x~(n) • Y~(n)). If at some round, i, 

in the protocol B n does not send the valid private key 

Ti which corresponds to K~ (which A" can verify) then 

A n continues the protocol substi tuting random bits for 

Xl,Xi+l, . . . ,  X r ( n ) .  

We now investigate the security of {(An, B")}~=i. If 

A n is replaced by a faulty processor then the output  of 

B n will have very little bias since the faulty processor can 

never guess the value of xi ~ yi very well during round i 

(the fact that  F is a t rapdoor  function implies this). If 

B n is replaced by a faulty processor then all that  B n can 

do is not send T~ to A n at some round i. This strategy 

can change the balance of 0s and ls  in (xl • yl,x2 

Y~,...,xKn) $ YKn)) by at most 1 and therefore will only 

change the output  of A n with probability O ( ~ - ~ ) .  

In [1] a description of a bit  selection scheme which 

is similar to the one described above, except that  it ap- 

plies to networks which contain an arbi trary number of 

processors, is given. 

5. O p e n  P r o b l e m s  

The scheme described in section 4 only has security 

O(~r) (this is the bound of the bias that  a faulty processor 

can cause) while the the lower bound on security proven 

in section 2 is O(~). It would be interesting to tighten 

this gap. 

It would also be interesting to see how much bias a 

group of isolated processors (i.e. which have no special 

facility to privately communicate with each other) could 

c a u s e .  
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