
On Private Scalar Product Computation for
Privacy-Preserving Data Mining

Bart Goethals1, Sven Laur2, Helger Lipmaa2, and Taneli Mielikäinen1

1 HIIT Basic Research Unit
Department of Computer Science
University of Helsinki, Finland

{goethals,tmielika}@cs.helsinki.fi
2 Laboratory for Theoretical Computer Science

Department of Computer Science and Engineering
Helsinki University of Technology, Finland

{slaur,helger}@tcs.hut.fi

Abstract. In mining and integrating data from multiple sources, there
are many privacy and security issues. In several different contexts, the
security of the full privacy-preserving data mining protocol depends on
the security of the underlying private scalar product protocol. We show
that two of the private scalar product protocols, one of which was pro-
posed in a leading data mining conference, are insecure. We then describe
a provably private scalar product protocol that is based on homomor-
phic encryption and improve its efficiency so that it can also be used on
massive datasets.

Keywords: Privacy-preserving data mining, private scalar product pro-
tocol, vertically partitioned frequent pattern mining.

1 Introduction

Within the context of privacy-preserving data mining, several private (shared)
scalar product protocols [DA01b,DA01a,DZ02,VC02] have been proposed. The
goal is that one of the participants obtains the scalar product of the private
vectors of all parties. Additionally, it is often required that no information about
the private vectors, except what can be deduced from the scalar product, will be
revealed during the protocol. Moreover, since data mining applications work with
a huge amount of data, it is desirable that the scalar product protocol is also very
efficient. A secure scalar product protocol has various applications in privacy-
preserving data mining, starting with privacy-preserving frequent pattern mining
on vertically distributed database [VC02] and ending with privacy-preserving
cooperative statistical analysis [DA01a].

To give an idea of how such a protocol can be used, let us look at the pro-
tocol by Vaidya and Clifton for computing frequent itemsets from vertically
partitioned transaction database [VC02]. A transaction database is a multi-set
of subsets (transactions) of some finite set (of items). A transaction database



can be seen also as a binary matrix where each row corresponds to a transac-
tion, each column corresponds to an item, and there is one in the entry (i, j)
if and only if the transaction i contains the item j. An itemset is a subset of
items. The frequency of an itemset in a transaction database is the fraction of
transactions containing the itemset as their subset. (The support of an itemset is
its frequency multiplied by the number of transactions in the database.) The σ-
frequent itemsets (i.e., the frequent itemsets with minimum frequency threshold
σ) in a transaction database are the itemsets with frequency at least σ. Thus,
mining the σ-frequent itemsets is equivalent to finding all subsets of columns of
the binary matrix where at least a σ-fraction of rows have only ones in those
columns. In a frequent itemset mining protocol for a vertically partitioned trans-
action database one party, Alice, has the projection of the database onto some
items and another party, Bob, has the projection of database onto the rest of
the items. The frequent itemset mining protocol of Vaidya and Clifton is based
on the property that an itemset can be frequent only if all of its subsets are
frequent. The candidate itemsets are generated and tested level-wise as in the
Apriori algorithm [AMS+96].

If an itemset contains items of only one party, then the party can compute the
frequency privately and share it with the other parties without any additional
privacy problems. The main challenge occurs when the support of a candidate
itemset containing items from both parties needs to be computed. In that case,
each party first computes which of the transactions contain the itemset within
their own part of the database. This kind of information can be conveniently
represented as binary vectors in which the ith entry represents whether or not
the itemset is contained in the ith transaction. The number of transactions
containing the itemset in the combined transaction database amounts to the
scalar product between the corresponding binary vectors of Alice and Bob. A
protocol, given by Vaidya and Clifton [VC02], attempts to compute the scalar
product in a secure manner, by computing the scalar product on scrambled
versions of the binary vectors, such that in the end of the protocol, both parties
obtain the joint support without ever seeing each others vector. Their protocol
reveals the supports of some infrequent itemsets, as not all candidate itemsets
are frequent; this can be avoided by combining private shared scalar product
protocols and Yao’s circuits for frequency testing.

In this paper, we show that the private scalar product protocol of Vaidya
and Clifton [VC02] is not private. Additionally, we are able to break another
private (shared) scalar product protocol which was recently proposed by Du
and Atallah [DA01a]. Our attacks against the Vaidya-Clifton and Du-Atallah
protocols work in the simplest cryptographic model: namely, they enable one of
the two parties to retrieve the private input of another party with probability,
very close to 1, after the two parties have executed the corresponding protocol
once.

While the attacks do not work for all possible private vectors of Alice and
Bob, they show that before applying the Vaidya-Clifton and Du-Atallah pro-
tocols, one must carefully analyse whether it is safe to apply these protocols



in any concrete case. Moreover, the provided attacks can be readily generalised
to work for a much larger fraction of private vectors in a more complex model
where attack’s success probability does not have to be 1 (but just large enough
for practical purposes, say 0.001) and/or when Alice and Bob re-execute the
corresponding scalar product protocols from [DA01a,VC02] with similar private
vectors. (Scalar product protocol from [DA01b] was recently analysed in [LL04].)

As a positive result, we describe a cryptographic protocol for computing
scalar product. We prove that the new scalar product protocol is private—in a
strong cryptographic sense—under standard cryptographic assumptions. More
specifically, no probabilistic polynomial time algorithm substituting Alice (resp.,
Bob) can obtain a non-negligible amount of information about Bob’s (resp., Al-
ice’s) private input, except what can be deduced from the private input and
private output of Alice (resp., Bob). This means, in particular, that this pro-
tocol can be used a polynomial number of times (in the security parameter)
with any private vectors of Alice and Bob in any context. In practice, the latter
means “an arbitrary number of times”. Finally, we show that by using some op-
timisation tricks, the proposed protocol can be made very efficient: we show how
to separately optimise for Alice’s and Bob’s computation, and for the commu-
nication of the new protocol. In particular, the communication-optimal version
is more communication-efficient than either of the Vaidya-Clifton or the Du-
Atallah protocols.

Road-map. In Section 2, we describe the necessary cryptographic preliminar-
ies. In Section 3, we analyse some previous private scalar product protocols.
In Section 4, we propose a new scalar product protocol, prove its security and
propose some important optimisations. We finish with conclusions and acknowl-
edgements.

2 Cryptographic Preliminaries

Secure Multi-Party and Two-Party Computation. To guarantee that a
protocol is secure in as many applications as possible, one should use the secure
multi-party and two-party techniques [Gol04]. Briefly, a two-party protocol be-
tween Alice and Bob is secure when privacy and correctness are guaranteed for
both Alice and Bob. It is said that a protocol protects privacy, when the informa-
tion that is leaked by the distributed computation is limited to the information
that can be learned from the designated output of the computation [Pin02].

There are several different security models where one can prove the security
of a protocol in. The simplest setting is the semi-honest model, where it is
assumed that both Alice and Bob follow the protocol, but they are also curious:
that is, they store all exchanged data and try to deduce information from it.
In the malicious model, no assumption is made about the behaviour of Alice
and Bob, and it is required that the privacy of one party is preserved even in
the case of an arbitrary behaviour of the second party. Most of the papers on
privacy-preserving data mining provide only security in the semi-honest model.



Such a protocol can be made secure in the malicious model when accompanied
with zero-knowledge proofs that both parties follow the protocol. However, such
proofs are usually too inefficient to be used in data mining applications.

Homomorphic public-key cryptosystems. A public-key cryptosystem Π
is a triple (Gen,Enc,Dec) of probabilistic polynomial-time algorithms for key-
generation, encryption and decryption. The security of a public-key cryptosystem
is determined by a security parameter k. For a fixed k, it should take more than
polynomial in k operations to break the cryptosystem. Together with increased
security, larger k means also larger keys and ciphertexts. The key generation
algorithm generates, on input 1k = 1 . . . 1 (k ones) a valid pair (sk, pk) of private
and public keys that corresponds to the security parameter k. For a fixed key pair
(sk, pk), let P (sk) denote the plaintext space of Π. The encryption algorithm Enc
takes as an input a plaintext m ∈ P (sk), a random value r and a public key pk and
outputs the corresponding ciphertext Encpk(m; r). The decryption algorithm Dec
takes as an input a ciphertext c and a private key sk (corresponding to the public
key pk) and outputs a plaintext Decsk(c). It is required that Decsk(Encpk(m; r)) =
m for any m ∈ P (sk), pk and r.

A public-key cryptosystem is semantically secure (IND-CPA secure) when
a probabilistic polynomial-time adversary cannot distinguish between random
encryptions of two elements, chosen by herself. We denote the encryption of
a message m by Encpk(m; r), where pk is the corresponding public key and r
is the used random string. A public-key cryptosystem is homomorphic when
Encpk(m1; r1) ·Encpk(m2; r2) = Encpk(m1 + m2; r1 · r2), where + is a group oper-
ation and · is a groupoid operation. This means that a party can add encrypted
plaintexts by doing simple computations with ciphertexts, without having the
secret key. Usually, P (sk) = Zm for some large m. One of the most efficient cur-
rently known semantically secure homomorphic cryptosystems was proposed by
Paillier cryptosystem [Pai99] and then improved by Damg̊ard and Jurik [DJ01].
In Paillier’s case, P (sk) = Zm with m ≥ 21024. One can effectively assume that
m is as large as say 24096, when using the Damg̊ard-Jurik cryptosystem [DJ01].
We will assume that k is the bit length of the plaintexts, thus k ≥ 1024.

Oblivious transfer. In an
(
n
1

)
-oblivious transfer protocol, Bob has a database

(D1, . . . ,Dn) and Alice has an index i ∈ [n]. The goal is for Alice to retrieve the
element Di without revealing her index i to Bob, and Bob does not want Alice
to get to know anything about the other elements in his database apart from
the element she asks for. Recently, Lipmaa [Lip04] proposed an asymptotically
efficient

(
n
1

)
-oblivious transfer protocol with communication Θ(log2 n)k.

3 Cryptanalysis of Proposed Private SP Protocols

Before cryptanalysing some of the previously proposed private scalar product
and private shared scalar product protocols, we must define what does it mean



to attack one. Next, we will give a somewhat intuitive definition. For simplicity,
we will require that all arithmetic is done in Zm for some m.

We call a protocol between Alice and Bob a scalar product (SP) protocol
when Bob obtains, on Alice’s private input x = (x1, . . . , xN ) ∈ ZN

m and on Bob’s
private input y = (y1, . . . , yN ) ∈ ZN

m, the scalar product x · y =
∑N

i=1 xiyi. A
protocol is a shared scalar product (SSP) protocol when Alice receives a uniformly
distributed random value sA ∈ Zm and Bob receives a dependent uniformly
distributed random value sB ∈ Zm, such that sA + sB ≡ x · y (mod m). A
scalar product protocol is private when after executing the protocol, Bob obtains
no more knowledge than x · y and Alice obtains no new knowledge at all. In
particular, Alice gets to know nothing new about Bob’s vector and Bob gets to
know nothing about Alice’s vector that is not implied by x and x · y. A private
shared scalar product protocol is defined analogously.

Recently, several researchers from the data mining community have proposed
private SSP and SP protocols [DA01b,DA01a,DZ02,VC02], that were primarily
meant to be used in the context of privacy-preserving data mining. Most of
the proposed solutions try to achieve information-theoretical security—that is,
without relying on any computational assumption—by using additive or linear
noise to mask the values. In almost all such solutions, one can construct a system
of linear equations based on the specification of the protocol, and solve it for
the secret values. We will next demonstrate that explicitly in the case of the
protocols from [DA01a,VC02].

3.1 Vaidya-Clifton Private Scalar Product Protocol

First, we analyse the Vaidya-Clifton private SP protocol [VC02], depicted by
Protocol 1. For the sake of simplicity, we assume that the database size is N = `n,
where n is a block size and ` is the number of blocks. We represent each N -
dimensional vector z either as z = (z1, . . . , zN ) or z = (z[1], . . . ,z[`]), where
z[i] = (z(i−1)n+1, . . . , zin). We denote the n-dimensional vectors (1, . . . , 1) and
(0, . . . , 0) by 1 and 0.

Protocol 1 is a slight modification of the original Vaidya-Clifton protocol.
Namely, in the original protocol all scalars belong to R, while in Protocol 1
they belong to Zm with m > N . Our modifications make the protocol more
applicable and also more secure for the next reasons. First, as computers can
use only limited precision, there will be stability and correctness problems when
computing over real numbers. Second, adding random noise r from R to value x
from R does not perfectly hide x since it is impossible to choose r uniformly at
random from R, or even from N. Therefore, cryptanalysis of the original Vaidya-
Clifton protocol is simpler and attacks against it are more dangerous when we
consider their protocol as working in R.

In the following, we explicitly assume that m is prime. Proposed attacks also
work with composite m, but then one would have to tackle many insubstantial
yet technical details. We will also establish some additional notation. First, for
any I = {i1, . . . , ij} ⊆ [N ] with |I| = j, any vector x and any matrix M , let
xI = (xi1 , . . . , xij ) and MI denote the sub-matrix of M that consists of the



Private input of Alice: x ∈ {0, 1}N
Private input of Bob: y ∈ {0, 1}N
Private output of Bob: Scalar product x · y mod m.

1. Alice and Bob jointly do:
Generate a random invertible N ×N matrix C.

2. Alice does:
Generate a random vector p ∈ ZN

m.
Send u← x + Cp to Bob.

3. Bob does:
Generate ` random values s1, . . . , s` ∈ Zm.
Send v ← CTy + r, where r[i]← si1, to Alice.

4. Alice does:
Set t0 := v · p.
For i ∈ {1, . . . , `}, set ti :=

∑n
j=1 p[i]j .

Send (t0, t1, . . . , t`) to Bob.
5. Bob does:

Return u · y − t0 +
∑`

i=1 siti.

Protocol 1: Vaidya-Clifton private shared scalar product protocol. (All com-
putations are done modulo a public m.)

rows I = {i1, . . . , ij}. Second, C is invertible and known to both Alice and Bob.
Therefore, define ai := (CT)−1ei mod m, where ei[j] = 1 if i = j and ei[j] =
0, otherwise. Define ω := (CT)−1v. Then (CT)−1r ≡ (CT)−1(s11, . . . , s`1) ≡∑`

i=1 siai (mod m), ω ≡ y +
∑`

i=1 siai (mod m) and ti ≡ ei · p ≡ ai · Cp
(mod m) for i ≥ 1.

First, we show that if the vector y has a low support then Alice is guaranteed
to learn half coefficients yi—and with a high probability the whole vector y—
after just executing Protocol 1 once.

Lemma 1. As previously, let supp(y) := |{y : yi 6= 0}| be the support of y. As-
sume that N ≥ (2 supp(y) + 1)`. After just executing Protocol 1 once, a semi-
honest Alice obtains at least half of the coefficients of y, with probability 1, by
solving 2 supp(y) + 1 systems of linear equations in ` variables.

Proof. Let M be the matrix with column vectors a1, . . . ,a`. Let s = (s1, . . . , s`).
The attack is based on the observation that the equality Ms ≡ ω− y (mod m)
gives Alice a system of N linear equations in ` unknowns sj . The values vi and
vectors a1, . . . ,a` are known to Alice; the values yi ∈ {0, 1} are unknown. Alice
partitions the set [N ] iteratively into ≥ N/` (non-empty) parts Ik as follows:
Denote Jk := [N ] \

⋃
i<k Ik. Alice chooses an Ik ⊆ Jk, such that the matrix

MIk
has the maximal possible rank with respect to Jk and Ik is minimal unless

the rank of MJk
is zero. In particular, MJk

= DkMIk
for some matrix Dk.

If rank of MJk
is zero then Alice chooses a random index from Jk. Note that

MJk
= DkMIk

still holds for an appropriate zero matrix Dk.



Now, there are at least N/` ≥ 2 supp(y)+1 parts Ik. For a majority of indices
k (we say that such indices k are “good”), yIk

is a zero vector. Therefore, in the
majority of the cases, Alice obtains the correct values sIk

by solving the equation
MIk

s = ωIk
. Since MJk

s = DkMIk
s, the value of yJk

is uniquely determined
by sIk

. Moreover, the smallest “good” k = k0 satisfies k0 ≤ supp(y) + 1. The
solution s of MIk0

s = (ω)Ik0
is consistent with the solutions that correspond

to other “good” k’s, that is, MIk
· sIk0

= ωIk
for all “good” indices k > k0.

Therefore, Alice can find all “good” indices k by majority voting. She also obtains
all coordinates of yJk0

. ut

If |Ik0 | = ` then all coordinates of y are revealed, otherwise coefficients are
revealed for all sets |Ik| ≤ |Ik0 |, as any solution to MIk0

s = ωIk0
uniquely

determines yJk0
= ωJk0

− Dk0ωIk0
. The next result shows that y is revealed

almost certainly.

Lemma 2. Let Ik be defined as in the proof of the previous lemma. Then
Pr [ |Ik| = |Ik+1| ] =

∏d−1
i=0

(
1 − m−|Jk|+i

)
. Thus, the probability that all coef-

ficients are revealed is approximately (1−m−N/2)supp(y)` ≈ 1− supp(y)`m−N/2.

Proof. Consider all possible vector assignments of a1, . . . ,a` that are consistent
with the choice of I1, . . . , Ik; that is, such assignments, for which MJk

= D′
kMIk

for some D′
k. The latter is equivalent to the assumption that rows of MJk

are randomly sampled from a vector space of dimension |Ik|. By a standard
result [vLW92, p. 303], the probability that rank(MJk

) = |Ik| is equal to∏|Ik|−1
i=0 (1 − m−|Jk|+i). Hence, the first claim is proven. Now, y is completely

determined if
∣∣Isupp(y)+1

∣∣ = `. As |I1| = ` by the protocol construction and for
k < supp(y),

∣∣Jsupp(y)

∣∣ > N/2, the second claim follows from a straightforward
calculation. ut

If we give more power to Alice, she will be able to do much better. Assume
that Protocol 1 is run twice with the same input vector y; let a1, . . . ,a` and
a′

1, . . . ,a′
` be vectors, computed from the random matrices C and C ′ as pre-

viously. Then, ω − ω′ =
∑`

i=1 siai −
∑`

i=1 s′ia
′
i. With high probability, this

determines s and s′ uniquely. To avoid similar attacks, Bob must never run Pro-
tocol 1 twice with the same input y but different matrices C. The next lemma
shows that also Alice must never run Protocol 1 twice with the same input x
but different matrices C.

Lemma 3. If Protocol 1 is re-executed k > N/` times with the same x, Bob
obtains x with probability higher than

∏N−1
i=0 (1−m−k`+i).

Proof. Each execution of Protocol 1 provides ` linear equations ai ·u = ai ·x +
ai ·Cp = ai ·x+ ti for i ∈ {1, . . . , `}. As a1, . . . ,a` are chosen randomly, similar
argumentation as in Lemma 2 gives the probability estimate. ut

Finally, we get another efficient attack when we consider itemsets with almost
the same support. For example, assume that Alice knows that supp(y − y′) <



N/(4`)− 1/2. Then, by using Lemma 1, Alice can determine s and s′ from the
equation ω−ω′ = y−y′+

∑`
i=1 siai−

∑`
i=1 s′ia

′
i; therefore, she obtains y and y′.

This attack works with any choice of C. The condition supp(y−y′)� N is not
so rare in the context of frequent itemset mining. Moreover, several optimisations
of Apriori are devised to exploit such shortcuts. To analyse the applicability
of low support attacks, we need additional notations. Let supp(I) denote the
support of the itemset I and yI the corresponding vector, i.e. yI,k = 1 iff the
kth row contains items I. We say that I is a closed frequent itemset, iff supp(I) is
over frequency threshold and for any proper superset J ) I, supp(I) > supp(J).
Now, if the frequent itemset I is not closed, then the Apriori algorithm discovers
J ⊃ I such that supp(yI − yJ ) = 0 and Alice can apply the attack. The ratio
ρ between frequent and frequent closed sets describes the average number of
vectors revealed by a single closed set. Empirical results [PHM00] on standard
data mining benchmarks indicate that ρ can range from 2 to 100 depending
on the frequency threshold, when the database contains some highly correlated
items.

The analysis can be extended further by using notion of frequent δ-free sets. A
itemset I is δ-free if and only if for any proper subset J of I, supp(yJ −yI) > δ.
In other words, an itemset I is not δ-free if and only if there is J ( I with
supp(yJ − yI) ≤ δ. Again, empirical results [BBR03,BB00] on standard data
mining benchmarks show that the number of frequent δ-free sets with δ ∈ [0, 20]
is several magnitudes smaller than the number of frequent sets, when database
contain highly correlated items. To conclude, low support differences are quite
common for many practical data sets and thus the Vaidya-Clifton scalar product
protocol is insecure for frequent itemset mining.

Remark on [VC02, Section 5.2]. In [VC02, Section 5.2], Vaidya and Clifton
note that the fact that xi and yi belong to {0, 1} can create a disclosure risk.
They propose two solutions. The first consists of “cleverly” selecting the matrix
C so that it is not evident which of the values of xi and yi are 1’s. Lemma 1
states that such a “clever” choice is impossible in general since at least a half
of y’s coordinates is revealed for every matrix C. Besides, the solution is not
fully spelled out and no security proofs are given. Another solution from [VC02,
Section 5.2] is said to increase the security of Bob but decrease the security of
Alice, but again, no security proofs are given. Thus, it is difficult to estimate the
exact security of the proposed solutions. It seems that neither of these mentioned
solutions is secure against our attacks.

Communication and computation of Vaidya-Clifton protocol. Alice and
Bob must both know C, thus the communication of the Vaidya-Clifton protocol
is approximately N2 log m bits. In the version of the scalar product protocol
where no privacy is guaranteed, Alice just sends her vector (N bits) to Bob, who
returns the scalar product (dlog2 Ne bits). Define the communication overhead
of a private scalar protocol P to be equal to C(P )/N , where C(P ) is the number
of bits communicated in the protocol P . Thus, the communication overhead of



Private inputs: Vectors x ∈ {0, 1}N and y ∈ {0, 1}N .
Private outputs: Shares sA + sB ≡ x · y mod m.

1. Alice does:
Generate random v1, . . . , vd−1 ← ZN

m.
Set vd := x−

∑d−1
i=1 vi and sA := 0.

2. For i = 1 to d do
(a) Alice does:

Generate random `i ∈ {1, . . . , p}.
Set hi`i := vi.
For j ∈ {1, . . . , `i − 1, `i + 1, . . . , p}: Generate random hij ∈ Zn

m.
Send (hi1, . . . , hip) to Bob.

(b) Bob does:
Generate random ri ∈ Zm.
For j ∈ {1, . . . , p}: Set zij := hij · y + ri.

(c) Alice does:
Use

(
p
1

)
-oblivious transfer to retrieve zi`i from (zi1, . . . , zip).

Set sA := sA + zi`i .
3. Alice outputs sA, Bob outputs sB = −

∑d
i=1 ri.

Protocol 2: Du-Atallah private SSP protocol. Here, m > N is a public modulus

the Vaidya-Clifton private SP protocol is Nm. Computation is dominated by
Θ(N2) multiplications and additions in Zm. The new scalar product protocol,
that we will propose in this paper, is both more secure and more efficient.

3.2 Du-Atallah Private Scalar Product Protocol

Du and Atallah proposed another private SSP protocol [DA01a], depicted by
Protocol 2. We show that also this protocol cannot handle binary vectors with
low support.

Since Protocol 2 chooses the values ri randomly, sA is a random value and
therefore Alice does not learn anything about y. To learn x, Bob must guess
correctly the values `i for all i. Since the probability of a random guess is p−d,
Du and Atallah argue that this protocol is secure when pd > 280. Bob can do
much better, however.

Lemma 4. Assume N ≥ (2 supp(x) + 1)pd. Then, with probability 1, Bob finds
at least N/2 coordinates of x by solving supp(x)+1 systems of linear equations,
each having dimension pd−1. With high probability ≈ (1−m−N/2)supp(x)(pd−1) ≈
1− supp(x)(pd− 1)m−N/2, Bob obtains the whole vector x.

Proof. Bob knows that
∑d

i=1 hiji = x for some values ji. Equivalently,

d∑
i=1

p∑
j=1

cijhij = x ,



where cij = 1 if j = ji and cij = 0, otherwise. Exactly as Alice did in the
proof of Lemma 1, Bob iteratively partitions [N ] into subsets Ik with maximal
possible rank. Hence, a solution to

∑
i,j cij(hij)Ik0

= 0 uniquely determines
xIk

=
∑

i,j cij(hij)Ik
for k > k0. On the other hand, Bob creates at least

2 supp(x) + 1 partitions Ik. Thus, there exists a k ≤ supp(x) + 1, such that
xIk

= 0. As in the proof of Lemma 1, we can determine the first “good” k0 ≤
supp(x) + 1 by using majority voting.

To reduce the amount of computations, Bob can ignore all sets |Ik| = pd.
For any “good” k, |Ik| ≤ pd − 1, as xIk

= 0 and the homogeneous system∑
i,j cij(hij)Ik

= 0 has a nontrivial solution.
The proof of the second claim is similar to the proof of Lemma 2, since it is

sufficient that pd− 1 random vectors are linearly independent, and |I1| ≥ pd− 1
by construction. ut

This protocol has another serious weakness, since with high probability
slightly more than pd coordinates of x allow to determine correct cij and thus
also reveal other coordinates. Therefore, a leakage of pd database entries, can
reveal the whole vector (database) and thus pd must be large, say more than
200. On the other hand, this protocol is very inefficient when pd is large.

Communication and computation complexity. Assume pd > 280. Then
the communication of the Du-Atallah private SSP protocol is dpN + dtp, where
tp is the communication complexity of the

(
p
1

)
-oblivious transfer protocol. This is

minimal when d is maximised, i.e., when p = 2. Taking the efficient
(
p
1

)
-oblivious

transfer protocol from [AIR01], one has t2 = 3k, where k ≈ 1024 is the security
parameter. Then the communication is 2dN + 3dk bits for d ≥ 80 and k ≥
1024. Taking d = 80 and k = 1024, we get communication 160N + 245760 bits.
However, Lemma 4 indicates that for the security of the Du-Atallah protocol, one
should pick p and d such that pd is quite large. For example, picking p = 211 and
d = 8 might result in an acceptable security level, but then the communication
of the protocol will be 214 ·N + dtp bits.

4 Cryptographic Private SSP Protocol

In this section we describe a private SSP protocol (Protocol 3) that is based on
homomorphic encryption. Note that a private SP protocol can be obtained from
it by defining sB ← 0.

Theorem 1. Assume that Π = (Gen,Enc,Dec) is a semantically secure ho-
momorphic public-key cryptosystem with P (sk) = Zm for some large m. Set
µ := b

√
m/Nc. Protocol 3 is a secure SSP protocol in the semi-honest model,

assuming that x,y ∈ ZN
µ . Alice’s privacy is guaranteed when Bob is a probabilis-

tic polynomial-time machine. Bob’s privacy is information-theoretical.

Proof. Clearly, the protocol is correct if the participants are honest. Since the
cryptosystem is semantically secure, Bob only sees N random ciphertexts, for



Private inputs: Private vectors x, y ∈ ZN
µ .

Private outputs: Shares sA + sB ≡ x · y mod m

1. Setup phase. Alice does:
Generate a private and public key pair (sk, pk).
Send pk to Bob.

2. Alice does for i ∈ {1, . . . , N}:
Generate a random new string ri.
Send ci = Encpk(xi; ri) to Bob.

3. Bob does:
Set w ←

∏N
i=1 cyi

i .
Generate a random plaintext sB and a random nonce r′.
Send w′ = w · Encpk(−sB ; r′) to Alice.

4. Alice does: Compute sA = Decsk(w
′) = x · y − sB .

Protocol 3: Private homomorphic SSP protocol

which he cannot guess the plaintexts. In particular, this holds even when Bob has
given two candidate vectors x1 and x2 to Alice and Alice has randomly chosen
one of them, x := xb. Even after a polynomial number of protocol executions
with Alice’s input, Bob will gain only an insignificant amount of information
about xb that will not help him in guessing the value of b. (This roughly corre-
sponds to the standard notion of semantic security.) On the other hand, Alice
only sees a random encryption of sA = x ·y−sB , where sB is random. But Alice
has the key anyways, so she can decrypt this message. Thus, Alice obtains no
information at all. ut

(Note that if m > 21024 and N ≈ 216 then µ ≥ 2504.) In Appendix A, we describe
an extension of this protocol to more than two parties.

Practical considerations. Note that when Alice and Bob need to execute this
protocol several times, they can reuse public and private keys and thus the setup
phase can be executed only once. Public key cryptography is computationally
demanding. To estimate the computational cost of the new scalar product proto-
col, we must count encryptions, decryptions and multiplications of ciphertexts.
Bob must perform N exponentiations and 1 encryption. Alice has to perform N
encryptions and 1 decryption.

In the specifically interesting case when xi, yi ∈ {0, 1} (e.g., when x and y
correspond to characteristic functions of two sets X and Y ; then x·y = |X ∩ Y |),
this protocol can be further optimised. Namely, Alice can pre-compute and then
store a large table of random encryptions of 0’s and 1’s. Then every “encryption”
just corresponds of fetching a new element from the correct table; this can be
done very quickly. Bob has to perform 1 encryption and supp(y) multiplications,
since the exponents yi are all Boolean. (When yi = 0 then cyi

i = 1 and otherwise
cyi

i = ci.)



The current hardware allows to do approximately 105 multiplications per sec-
onds and thus the computational complexity of both Alice and Bob is tolerable.
A similar analysis applies for Protocol 4. Here, Alice and Bob must pre-compute
N encryptions. Hence, we can conclude that the computational complexity is not
a serious downside of the proposed protocols. Similar, although not as efficient,
optimisation tricks can also be used to speed up Protocol 3 when x and y are
not binary.

Estimated communication complexity. The only serious drawback of the
new protocols is the communication overhead: since Alice sends N ciphertexts
ci, the overhead is k′/µ, where k′ is just the size of each ciphertext in bits. When
using any of the currently known most efficient semantically secure homomorphic
cryptosystems (e.g., the one from [Pai99]), k′ ≈ 2048. For x,y ∈ Zm′ with very
small m′—say, m′ ≤ 13, this compares non-favourably with the overhead of
the (insecure) Du-Atallah protocol which has the overhead of approximately 160
times with d = 80 and k = 1024. For a large m′, the described protocol is already
more communication-efficient than the Du-Atallah protocol.

Comparison with Freedman-Nissim-Pinkas protocol. Recently, Freed-
man, Nissim and Pinkas proposed a related cryptographically secure protocol
for computing the set intersection cardinality [FNP04], a task that is equiva-
lent to privately computing the scalar product of two binary vectors. In the
non-shared case, the Freedman-Nissim-Pinkas protocol is more efficient than the
new one, but then the participants also learn the values supp(x) and supp(y).
However, recall that in the data mining applications it is preferable that both
parties will get only shares sA + sB = x · y mod m of the scalar product, oth-
erwise frequency of some infrequent sets is revealed. Moreover, sometimes only
a list of frequent sets without frequencies is required.

Freedman, Nissim and Pinkas proposed also a solution for shared version,
but their protocol requires a secure circuit evaluation. Briefly, secure evaluation
means that first Alice and Bob obtain supp(x) different shares

si + ti =

{
0, if xi = 1, yi = 1
ri, if xi = 1, yi = 0

}
mod m

where ri ∈ Zm is a random value and m is (say) a 1024-bit number. To securely
compute x · y by secure circuit evaluation, one therefore needs to execute obliv-
ious transfer for each 1024 · supp(x) input bit pairs (si, ti). Since a

(
2
1

)
-oblivious

transfer protocol requires sending at least three encryptions, the communication
overhead of the Freedman-Nissim-Pinkas protocol is lower than the communica-
tion overhead of Protocol 3 only if supp(x) ≤ N/(3 · 1024), i.e., if the candidate
set is very infrequent.

Reducing communication overhead. We shall now discuss how to reduce
the overhead if it is known that x and y are Boolean. Again, similar optimi-
sation techniques can be used when x,y ∈ Zµ′ for some 2 < µ′ � µ. In the



following we assume that the plaintext space of the cryptosystem Π is a residue
ring Zm such that log m ≥ 1024. This is the case for all widely known homo-
morphic cryptosystems. When we assume that xi, yi ∈ {0, 1}, every ciphertext
ci in Protocol 3 only transfers a single bit xi, which results in communication
overhead.

The next technique for packing several bits into one plaintext is fairly stan-
dard in cryptography (it has been used at least in the context of electronic vot-
ing [CGS97,DJ01], electronic auctions [LAN02] and oblivious transfer [Lip04]).
To pack k entries into a single message—recall that the plaintext length is k
bits—, we fix a radix B > N , such that Bk < m, and work implicitly with B-
ary numbers. Let [vk, . . . , v2, v1] = v1 + v2B + · · ·+ vkBk−1. Our method works
only in the case when Alice and Bob do batch computation of scalar products,
more precisely, when Alice and Bob need to compute xi · y for several vectors
xi, i ∈ {1, . . . , k}, owned by Alice. (This is exactly what happens in the context
of frequent itemset mining.)

The new batch scalar product protocol looks exactly like Protocol 3, except
that Alice computes ci as

ci =Encpk([xki, . . . , x2i, x1i]; ri)

=Encpk(1; 0)x1iEncpk(B; 0)x2i · · · · · Encpk(Bk−1; 0)xikEncpk(0; ri) .

It takes at most k multiplications to compute ci. Again, the encryptions
Encpk(Bj ; 0) can be computed in the setup phase. Hence, during the first step,
Alice’s computation is N encryptions and O(kN) multiplications.

At the second step of the protocol, Bob computes

w =
N∏

i=1

Encpk(yi[xki, . . . , x2i, x1i]; ri)Encpk(−sB , r′)

= Encpk ([xk · y, . . . ,x1 · y]− sB ; r′′) .

Hence, if Bob reveals sB , Alice can restore all scalar products xj ·y. Sometimes
it is also needed that Alice be able only to compute xj · y for j ∈ I, where I
is a proper subset of {1, . . . , k}. One can do this efficiently by using standard
cryptographic techniques.

Therefore, when using the Paillier cryptosystem, the resulting protocol for
privately computing the scalar product of two binary vectors has almost opti-
mal communication overhead of dlog Ne times. (When using the Damg̊ard-Jurik
cryptosystem, the communication overhead might even be smaller.) This should
be compared to the 160 times overhead of the insecure Du-Atallah protocol.

Related work. After the preproceedings version of the current paper was pub-
lished, we were acknowledged by Rebecca Wright of some previous work. In
particular, in [WY04], Wright and Yang proposed essentially the same SSP pro-
tocol as Protocol 3, optimised for the case of binary data as in our paper. How-
ever, they did not consider the batch SSP case. (See [WY04] and the references
therein.)



Security in malicious model. Protocol 3 can be made secure in the malicious
model by letting Alice to prove in zero-knowledge, for every i, that ci encrypts
a value from Zµ. This can be done efficiently in the random oracle (or common
reference string) model [Lip03]. An alternative is to use conditional disclosure
of secrets [AIR01] modified recently to the setting of Paillier’s cryptosystem
in [LL05]. Both methods guarantee that at the end of a protocol run, Alice is
no better of than mounting the next probing attack : Alice creates a suitable
valid input vector x′, executes the protocol with Bob, and obtains x′ · y. If x′

is suitably chosen (e.g., x′i = 1 and x′j = 0 for j 6= i), this may result in privacy
leakage. However, this probing attack is unavoidable, no matter what private
scalar product protocol is used instead of Protocol 3. The only way to tackle this
attack is to let Alice to prove that her input x is “correctly” computed, whatever
“correctly” means in the concrete application (e.g., in frequent itemset mining
on vertically distributed databases). While such a functionality can be added to
Protocol 3, it is not a part of the definition of a “private scalar product” protocol,
but highly application-dependent (and thus should be left to be specified on a
higher level), and very often, highly costly.

5 Conclusions

The secure computation of a scalar product is an important task within many
data mining algorithms that require the preservation of privacy. Recently, several
protocols have been proposed to solve this task. We have shown, however, that
they are insecure. Moreover, we presented a private scalar product protocol based
on standard cryptographic techniques and proved that it is secure. Furthermore,
we described several optimisations in order to make it very efficient in practice.

Acknowledgements. We would like to thank Benny Pinkas for useful com-
ments. The second and the third author were partially supported by the Esto-
nian Information Technology Foundation, the Finnish Defence Forces Institute
for Technological Research and by the Finnish Academy of Sciences.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer:
How to Sell Digital Goods. In Birgit Pfitzmann, editor, Advances in Cryptol-
ogy — EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Sci-
ence, pages 119–135, Innsbruck, Austria, 6–10 May 2001. Springer-Verlag.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
and A. Inkeri Verkamo. Fast Discovery of Association Rules. In Usama M.
Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages
307–328. AAAI/MIT Press, 1996.

[BB00] Jean-Franois Boulicaut and Artur Bykowski. Frequent Closures as a Concise
Representation for Binary Data Mining. In PAKDD 2000, volume 1805 of
Lecture Notes in Computer Science, pages 62–73. Springer, 2000.



[BBR03] Jean-Franois Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-Sets:
A Condensed Representation of Boolean Data for the Approximation of
Frequency Queries. Data Mining and Knowledge Discovery, 7(1):5–22, 2003.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure and
Optimally Efficient Multi-Authority Election Scheme. In Walter Fumy, ed-
itor, Advances in Cryptology — EUROCRYPT ’97, volume 1233 of Lecture
Notes in Computer Science, pages 103–118, Konstanz, Germany, 11–15 May
1997. Springer-Verlag.

[DA01a] Wenliang Du and Mikhail J. Atallah. Privacy-Preserving Statistical Anal-
ysis. In Proceedings of the 17th Annual Computer Security Applications
Conference, pages 102–110, New Orleans, Louisiana, USA, December 10–14
2001.

[DA01b] Wenliang Du and Mikhail J. Atallah. Protocols for Secure Remote Database
Access with Approximate Matching, volume 2 of Advances in Informa-
tion Security, page 192. Kluwer Academic Publishers, Boston, 2001.
http://www.wkap.nl/prod/b/0-7923-7399-5.

[DJ01] Ivan Damg̊ard and Mads Jurik. A Generalisation, a Simplification and
Some Applications of Paillier’s Probabilistic Public-Key System. In Kwangjo
Kim, editor, Public Key Cryptography 2001, volume 1992 of Lecture Notes
in Computer Science, pages 119–136, Cheju Island, Korea, 13–15 February
2001. Springer-Verlag.

[DZ02] Wenliang Du and Zhijun Zhan. A Practical Approach to Solve Secure Multi-
party Computation Problems. In Carla Marceau and Simon Foley, editors,
Proceedings of New Security Paradigms Workshop, pages 127–135, Virginia
Beach, virginia, USA, September 23–26 2002. ACM Press.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private
Matching and Set Intersection. In Christian Cachin and Jan Camenisch,
editors, Advances in Cryptology — EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 1–19, Interlaken, Switzerland,
2–6 May 2004. Springer-Verlag.

[Gol04] Oded Goldreich. Foundations of Cryptography: Basic Applications. Cam-
bridge University Press, 2004.

[LAN02] Helger Lipmaa, N. Asokan, and Valtteri Niemi. Secure Vickrey Auctions
without Threshold Trust. In Matt Blaze, editor, Financial Cryptography —
Sixth International Conference, volume 2357 of Lecture Notes in Computer
Science, pages 87–101, Southhampton Beach, Bermuda, 11–14 March 2002.
Springer-Verlag.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-Knowledge
Arguments. In Chi Sung Laih, editor, Advances on Cryptology — ASI-
ACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages
398–415, Taipei, Taiwan, 30 November–4 December 2003. Springer-Verlag.

[Lip04] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Total
Communication. Technical Report 2004/063, International Association for
Cryptologic Research, February 25 2004.

[LL04] Sven Laur and Helger Lipmaa. On Private Similarity Search Protocols. In
Sanna Liimatainen and Teemupekka Virtanen, editors, Proceedings of the
Ninth Nordic Workshop on Secure IT Systems (NordSec 2004), pages 73–
77, Espoo, Finland, November 4–5, 2004.

[LL05] Sven Laur and Helger Lipmaa. Additive Conditional Disclosure of Secrets.
Manuscript, January 2005.



[Pai99] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Jacques Stern, editor, Advances in Cryptology —
EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science,
pages 223–238, Prague, Czech Republic, 2–6 May 1999. Springer-Verlag.

[PHM00] J. Pei, J. Han, and R. Mao. CLOSET: An efficient algorithm for mining
frequent closed itemsets. In 2000 ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, 2000.

[Pin02] Benny Pinkas. Cryptographic Techniques for Privacy-Preserving Data Min-
ing. KDD Explorations, 4(2):12–19, 2002.

[VC02] Jaideep Vaidya and Chris Clifton. Privacy Preserving Association Rule Min-
ing in Vertically Partitioned Data. In Proceedings of The 8th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
639–644, Edmonton, Alberta, Canada, July 23–26 2002. ACM.

[vLW92] Jacobus H. van Lint and Richard M. Wilson. A Cource in Combinatorics.
Cambridge University Press, 1992.

[WY04] Rebecca N. Wright and Zhiqiang Yang. Privacy-Preserving Bayesian Net-
work Structure Computation on Distributed Heterogeneous Data. In Pro-
ceedings of The Tenth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 713–718, Seattle, Washington, USA,
August 22–25 2004. ACM.

A Private Generalised Scalar Product Protocol

Next, we propose a secure generalised scalar product protocol (Protocol 4) for

〈x1,x2, . . . ,xk〉 =
N∑

i=1

x1i · · ·xki .

For the sake of simplicity, we consider only the three-party case but the protocol
can be easily generalised. Again, Alice has a private key; Bob and Carol know
only the corresponding public key. The security of the generalised scalar product
protocol depends on Alice. Namely, when Alice colludes with other parties then
privacy can be compromised. For example, colluding Alice and Carol can reveal
yi, unless xi = 0, since Decsk(di) = xiyi. Thus, we get the following result.

Theorem 2. Assume that Π = (Gen,Enc,Dec) is a semantically secure homo-
morphic public-key cryptosystem with P (sk) = Zm for some large m. Protocol 4
is a secure generalised scalar product protocol. In particular, it is secure against
all possible coalitions provided that Alice does collude with other parties.

The proof is a simple generalisation of the previous proof. Bob must re-
randomise ci’s as di = ci · Encpk(0; r′i), since otherwise the values of yi’s can be
detected only by comparing the ciphertext that he receives from Alice with the
one he sends to Carol. The sharing step 4 allows combine the outcome with other
cryptographic protocols.

The assumption that Alice does not collude with other parties is quite strong.
When we modify the protocol so that (sk, pk) is generated jointly by Alice, Bob
and Carol and that on the step 4, they do threshold decryption of w, we get a
private SP protocol with the next security result:



Private inputs: Private vectors x, y, z ∈ ZN
µ .

Private outputs: Shares sA + sB + sC ≡ 〈x, y, z〉 mod m

1. Alice does:
Generate a key-pair (sk, pk).
Send the public key pk to Bob and Carol.

2. Alice does for i ∈ {1, . . . , N}:
Send ci = Encpk(xi; ri) to Bob.

3. Bob does for i ∈ {1, . . . , N}:
Set di = cyi

i Encpk(0; r′i).
Send di to Carol.

4. Carol does:
Set w ←

∏N
i=1 czi

i .
Generate a random plaintext sC and a random nonce r′.
Send w′ ← w · Encpk(−sC ; r′) to Bob.

5. Bob does:
Generate a random plaintext sB and a random nonce r′′.
Send w′′ ← w′ · Encpk(−sB ; r′′) to Alice.

6. Alice computes sA ← Decsk(w
′′) = x · y − sB − sC .

Protocol 4: Private generalised homomorphic SSP protocol

Theorem 3. Assume Π = (Gen,Enc,Dec) is a semantically secure homomor-
phic threshold public-key cryptosystem. Then Protocol 4, generalised to κ parties,
is secure against coalitions by < κ/2 parties.


