Additive Conditional Disclosure of Secrets

Sven Laur
swen@math.ut.ee
Helsinki University of Technology

Motivation

Consider standard two-party computation protocol.

Standard goals of secure two-party computation

- The inputs and outputs should remain private:
- Charlie should learn nothing except x and $f_{1}(x, y)$.
- Lucy should learn nothing except y and $f_{2}(x, y)$.
- The outputs should be correct:
- Charlie should really obtain $f_{1}(x, y)$.
- Lucy should really obtain $f_{2}(x, y)$.
- The protocol should be fair:
- Charlie and Lucy should both obtain outputs or none of them.

Secure evaluation of intersection cardinality

Charlie
 Lucy

Characteristic vector
$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

Compute $(\mathrm{pk}, \mathrm{sk}) \leftarrow$ Gen.

Form a vector
$c=\left(\mathrm{E}\left(x_{1}\right), \mathrm{E}\left(x_{2}\right), \ldots, \mathrm{E}\left(x_{n}\right)\right)$.

Output $\operatorname{Dec}(d)=|X \cap Y|$

Compute answer

$$
\begin{aligned}
d & =c_{1}^{y_{1}} c_{2}^{y_{2}} \cdots c_{n}^{y_{n}} \mathrm{E}(0) \\
& =E\left(x_{1} y_{1}+x_{2} y_{2} \cdots+x_{n} y_{n}\right)
\end{aligned}
$$

\qquad
Characteristic vector

$$
y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)
$$

$\xrightarrow{\mathrm{pk}}$ Store the public key pk.

\qquad

Output \perp

What if Charlie is malicious?

If Charlie sends invalid vector

$$
c=\left(\mathrm{E}(1), \mathrm{E}(2), \mathrm{E}(4), \ldots \mathrm{E}\left(2^{n}\right)\right),
$$

then the return value

$$
d=\mathrm{E}\left(1 y_{1}+2 y_{2}+4 y_{3}+\cdots+2^{n} y_{n}\right)
$$

and Charlie can reveal

$$
\operatorname{Dec}(d)=y_{n} \ldots y_{2} y_{1}=y
$$

Standard way to achieve privacy and correctness

1. Device a protocol Π that is secure in semihonest model:

+ Both parties follow the protocol,
- but try to extract additional information

2. Extend the protocol Π by forcing semihonest behaviour:

+ Both parties commit their inputs x and y.
+ For each message m_{i} of the protocol Π the sender adds a zeroknowledge proof $\mathrm{PK}\left(m_{i}\right)$ that m_{i} was correctly formed.

Extended protocol

Some properties of extended protocols

- Standard zero-knowledge proofs have at least four rounds:
- The extended protocol has a large communicational overhead.
- The extended protocol has a large overhead in rounds.
- We can use non-interactive zero-knowledge proofs (NIZK):
+ Proofs will be relatively short binary strings.
+ The number of rounds do not increase.
- The security properties of NIZK are essentially unknown.
- All proofs are valid in the random oracle model.
- All proofs are valid in the common reference string model.

What if correctness is infeasible?

When correctness requirement is questionable?

- Lucy's input might be so large that ZK proofs are huge.
- Charlie computes a predicate $P(x, y)$ and there are wild cards

$$
\begin{array}{ll}
\exists y_{0}: & \forall x P\left(x, y_{0}\right)=0 \\
\exists y_{1}: & \forall x P\left(x, y_{1}\right)=1
\end{array}
$$

- External reasons force Lucy to act in a semihonest way, for example
- commercial reputation,
- laws forced by government organisations.

Informal definition of privacy

- Charlie should learn $f_{1}(x, y)$ only if + input x is in the valid range \mathcal{X};
+ all messages m_{i} follow protocol specification.
- Charlie should learn nothing if $x \notin \mathcal{X}$ or some m_{i} is malformed.
- Lucy should learn $f_{2}(x, y)=\perp$, i.e. nothing.

Binding conditional disclosure of secrets (CDS)

Charlie learns secret s only if the message m_{i} is formed correctly.

Additive conditional disclosure of secrets (ACDS)

Charlie learns secret s only if the input x is in valid set \mathcal{X}.

ACDS from oblivious transfer

Consider a keyed list access
Charlie Sally

Charlie invokes oblivious transfer protocol to retrieve:

- $L\left[y_{i}\right]=s$ if $y_{i} \in \mathcal{X}$,
- $L\left[y_{i}\right]=\perp$ if $y_{i} \notin \mathcal{X}$.

Simple ACDS protocol

Charlie

Sally
Input x.
Secret s and set of valid values
$\mathcal{X}=\left\{y_{1}, \ldots, y_{k}\right\}$.
Compute (pk, sk) \leftarrow Gen.
Send a query $c=\mathrm{E}(x)$
$\xrightarrow{\mathrm{pk}}$
Store the public key pk.
Compute answers

$$
\begin{aligned}
d_{i} & =\left(c \cdot \mathrm{E}\left(-y_{i}\right)\right)^{t_{i}} \cdot \mathrm{E}(s) \\
& =\mathrm{E}\left(t_{i}\left(x-y_{i}\right)+s\right)
\end{aligned}
$$

Output $\mathrm{E}(x)$

Spectacular failure of homomorphic OT

The message space of Pallier encryption scheme is $\mathbb{Z}_{p \cdot q}$ for primes $p, q \in \mathbb{P}$.
If Charlie sends $E(x)$ such that

$$
x \equiv y_{1} \quad \bmod p \quad \text { and } \quad x \equiv y_{2} \quad \bmod q
$$

then

$$
\begin{array}{llll}
\operatorname{Dec}\left(d_{1}\right) \equiv t_{1}\left(x-y_{1}\right)+s & \bmod p q & \Rightarrow & \operatorname{Dec}\left(d_{1}\right) \equiv s \\
\bmod p \\
\operatorname{Dec}\left(d_{2}\right) \equiv t_{1}\left(x-y_{2}\right)+s & \bmod p q & \Rightarrow & \operatorname{Dec}\left(d_{2}\right) \equiv s
\end{array} \bmod q
$$

and Charlie can restore secret even if $x \notin \mathcal{X}$.

What is wrong here!?

- If $\operatorname{gcd}\left(x-y_{i}, p q\right)=1$ then every thing is OK

$$
\operatorname{Pr}\left[\operatorname{Dec}\left(d_{i}\right)=t_{i}\left(x-y_{i}\right)+s=u\right]=\frac{1}{p q} .
$$

- Otherwise we have a distribution with large steps.

Information-theoretical solution

We choose many different shifts Δ for a single s and send $s+\Delta$ instead.

- Then large bumps cancel out.

- If Δ is such a set that the distribution $\Delta \bmod p$ and $\Delta \bmod q$ is close to uniform, then

$$
t_{i}\left(x-y_{i}\right)+s+\Delta, \quad t_{i} \in \mathbb{Z}_{p \cdot q} \quad x \neq y_{i}
$$

is close to uniform.

Precise construction

- We choose ℓ such that $\frac{m 2^{\ell}}{2 \min \{p, q\}} \leq 2^{-\lambda}$, where $k=|\mathcal{X}|$ and $2^{-\lambda}$ is desired security level.
- The message space reduces $s \in\{0,1\}^{\ell}$.
- The random shifts are

$$
\Delta=\left\{0,2^{\ell}, 2 \cdot 2^{\ell}, 3 \cdot 2^{\ell}, \ldots r \cdot 2^{\ell}\right\}, \quad r \cdot 2^{\ell}<p q<(r+1) 2^{\ell}
$$

- Charlie can restore

$$
s \equiv\left(\operatorname{Dec}\left(d_{i_{0}}\right) \quad \bmod p q\right) \quad \bmod 2^{\ell} \equiv s+\Delta \quad \bmod 2^{\ell} \equiv s \quad \bmod 2^{\ell}
$$

Computationally secure solution

Information theoretical solution has a low throughput.

- We can use roughly $25 \%-40 \%$ of the message space size for the standard Pallier encryption scheme with 512 bit primes.

If we require only computational privacy we can do significantly better.

- Trivial solution
$\mathrm{E}(\boxed{I T}$ encoded key $k)$ and $\operatorname{SymEnc}_{k}(s)$
- Can compress it all into a single encryption?

Cleverly encoded 128 bit key k	$\operatorname{SymEnc}_{k}(s)$

Now recall the idea of CDS

Charlie learns secret s only if the message m_{i} is formed correctly.

Privacy through binding CDS

Formal specification

In the semihonest protocol Π Charlie sends messages $m_{1}, m_{3}, \ldots, m_{r-1}$.

Secure transformation

- For each odd message m_{i} Charlie and Lucy execute a binding CDS scheme such that
- Charlie obtains a secret s_{i} iff m_{i} is valid;
- Lucy can compute message m_{i} from protocol transcript.
- Lucy uses restored m_{i} and follows the original protocol Π.
- Lucy sends $m_{r} \oplus s_{1} \oplus \cdots \oplus s_{r-1}$ as last message.
- Charlie can restore m_{r} iff $m_{1}, m_{3}, \ldots, m_{r-1}$ were correctly formed.

Alternative viewpoint to padding schemes in ACDS

- We used special kind of padding scheme to prevent malicious behaviour.
- Plaintext awareness transformations use also padding that fix a very restricted input format.
- Actually, the constructed padding schemes achieve plain-text awareness under very restricted conditions. Adversary is allowed to:
- do homomorphic operations;
- choose a random cryptogram;
- choose a random cryptogram of p;
- choose a random cryptogram of q;

