Extractors from Reed-Muller codes

Sven Laur
swen@math.ut.ee
Helsinki University of Technology

Brief outline

- Quick recap of coding theory
- Reed-Muller codes
- State of the art binary codes
- Alternative view to randomness
- Block-sources with low conditional min-entropy
- Block-sources with small failure probability
- Close look to the engine under the hood
- TZS-construction
- Double counting proof technique
- Bells and whistles-wrapper for binary inputs

Essentials of Reed-Muller codes

Consider all multivariate polynomials $f: \mathbb{F}_{q}^{d} \rightarrow \mathbb{F}_{q}$ with $\operatorname{deg} f \leq h$.

$$
\mathcal{M}=\left\{f \in \mathbb{F}_{q}\left[x_{1}, \ldots, x_{d}\right]: \operatorname{deg} f \leq h\right\}
$$

Now, fix a clever set $\mathcal{S} \subseteq \mathbb{F}_{q}^{d}$. To code $f \in \mathcal{M}$ evaluate f on \mathcal{S}, i.e.

$$
\mathcal{M} \ni f \longmapsto\left(f\left(s_{1}\right), \ldots, f\left(s_{k}\right)\right) \in \mathbb{F}_{q}^{k}
$$

Trivia: If $\mathcal{S}=\mathbb{F}_{q}^{d}$ then

- code length is q^{d};
- code dimension $\binom{h+d}{d}$.

State of the art binary codes

We need really sparse codes that are efficiently constructible.

Combinatorial list decoding property

A code has combinatorial list decoding property α

- if every Hamming ball of relative radius $\frac{1}{2}-\alpha$ has $\mathcal{O}\left(1 / \alpha^{2}\right)$ codewords.

There are polynomial-time constructible $[n, k]$ codes with combinatorial list decoding property α, where $n=\mathcal{O}\left(k / \alpha^{4}\right)$.

Uniform distribution has no memory!

Consider a partition of random random source into blocks $Z=Z_{1} \circ \cdots \circ Z_{b}$. How much information we gain if we know $Z_{1} \circ \cdots \circ Z_{i-1}$?

$$
k_{i}\left(z_{1} \circ \cdots \circ z_{i-1}\right)=H_{\infty}\left(Z_{i} \mid z_{1} \circ \cdots \circ z_{i-1}\right)
$$

Block source

Random source Z is a $\left(n_{1}, k_{1}\right), \ldots,\left(n_{b}, k_{b}\right)$ block source iff

$$
k_{i}=\max _{z_{1} \circ \cdots \circ z_{i-1}} H_{\infty}\left(Z_{i} \mid z_{1} \circ \cdots \circ z_{i-1}\right) \quad i=1, \ldots, b .
$$

- In case of uniform distribution and $k_{i}=n_{i}$.
- Hence the values k_{i} characterise how far is the distribution from uniform.

Block sources with small failures

Block source with tolerated failure $\boldsymbol{\beta}$

Random source Z is a $\left(n_{1}, k_{1}\right), \ldots,\left(n_{b}, k_{b}\right) \beta$-almost block source iff

$$
\operatorname{Pr}_{z_{1} \circ \cdots \circ z_{i-1}}\left[H_{\infty}\left(Z_{i} \mid z_{1} \circ \cdots \circ z_{i-1}\right)<k_{i}\right] \leq \beta \quad i=1, \ldots, b
$$

Lemma 1. A β-almost $\left(n_{1}, k_{1}\right), \ldots,\left(n_{\beta}, k_{b}\right)$ block source is $b \beta$ close to $\left(n_{1}, k_{1}\right), \ldots,\left(n_{\beta}, k_{b}\right)$ block source.

Proof. Standard hybrid argument technique:

- Substitute failures with uniform distribution.
- Do some simple calculations to verify result.

Block sources with large min-entropies

Lemma 2. $A(1, \kappa(\alpha)), \ldots,(1, \kappa(\alpha))$ block source with $2^{-\kappa(\alpha)}=\frac{1}{2}+\alpha$ is $b \alpha$ close to the uniform distribution.

Proof. Standard hybrid argument technique:

- Substitute blocks one by one with uniform distribution.
- Do some simple calculations to verify result.

Corollary 1. A β-almost $(1, \kappa(\alpha)), \ldots,(1, \kappa(\alpha))$ block source with $2^{-\kappa(\alpha)}=\frac{1}{2}+\alpha$ is $b(\alpha+\beta)$ close to uniform distribution.

Extractor specification

Standard extractor

- Random source X has a min-entropy $H_{\infty}(X) \geq k$.
- Random source Y is uniform.
- Output source Z is close to uniform.

Strong extractor

- Random source X has a min-entropy $H_{\infty}(X) \geq k$.
- Random source Y is uniform.
- Output source $Y \circ Z$ is close to uniform.

TZS extractor. Type specification

We construct a strong extractor where

- X ranges over all two-variate Reed-Muller polynomials

$$
\mathcal{M}=\left\{f \in \mathbb{F}_{q}\left[x_{1}, x_{2}\right]: \operatorname{deg} f<h\right\} ;
$$

- Y ranges uniformly over triples

$$
\left(a_{1}, a_{2}, j\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q} \times[1, \ell] ;
$$

- output Z is m bit string.

TZS extractor. Auxiliary structures

Given two error parameters:

- α min-entropy bound to a bit, i.e. $2^{-\kappa(\alpha)}=\frac{1}{2}+\alpha$;
- failure bound β on block source.

We can set

- q to the first prime $q \geq \Omega\left(\frac{h}{\alpha^{4} \beta^{4}}\right)$;
- C to linear binary code of dimension $d=\lceil\log q\rceil$ with combinatorial list decoding property $\frac{\alpha \beta}{4}$;
- ℓ to the code-length of \mathbf{C}.

TZS extractor. Construction

Given: $f \in \mathcal{M}$ and $\left(a_{1}, a_{2}, j\right) \in \mathbb{F}_{q} \times \mathbb{F}_{q} \times[1, \ell]$
Output: a bit string $z=z_{1}, \ldots z_{m}$ such that

$$
z_{i}=\mathbf{C}\left(f\left(a_{1}+i, a_{2}\right)\right)_{j} \quad i=1, \ldots, m
$$

Visualisation

	1	2		m
1	O	Q		\bigcirc
2				
3	\bigcirc	\bigcirc		\bigcirc
3	$\overparen{\S}$	$\overparen{®}$		$\stackrel{8}{8}$
	+	+		+
:	\checkmark	\cdots		ヨ
ℓ	${ }^{8}$	过		8
ℓ	\bigcirc	\bigcirc		\triangle

General framework

Function E is (k, ϵ) strong extractor iff for any distribution X over \mathcal{M}

$$
H_{\infty}(X) \geq k \quad \Rightarrow \quad \operatorname{SDiff}\left(U_{Y} \circ E\left(X, U_{Y}\right) \| U_{Z}\right) \leq \epsilon
$$

Necessary and sufficient test

Choose $X \subseteq \mathcal{M}$ such that $|X| \geq 2^{k}$ and use uniform distribution over X. Show that

$$
\operatorname{SDiff}\left(U_{Y} \circ E\left(U_{X}, U_{Y}\right) \| U_{Z}\right) \leq \epsilon
$$

or alternatively

$$
\operatorname{SDiff}\left(U_{Y} \circ E\left(U_{X}, U_{Y}\right) \| U_{Z}\right)>\epsilon \quad \Rightarrow \quad|X|<2^{k}
$$

Double counting argument

Assume that $U_{Y} \circ E\left(U_{X}, U_{Y}\right)$ is not a block source with:

- relatively small failure probability β;
- min-entropy bound $\kappa(\alpha)$ such that $2^{-\kappa(\alpha)}=\frac{1}{2}+\alpha$.

Deduce a contradiction

- Derive a short description for some polynomials $f \in X^{*} \subseteq X$.
- Show that polynomials with short description form a large fraction of X.
- Compute the information-theoretical upper bound to $\left|X^{*}\right|$.
- Expose the contradiction in sizes.

Setting the stage

To get a contradiction assume that the output $U_{Y} \circ E\left(U_{X}, U_{Y}\right)$ is not β-almost $(\star, \star),(1, \kappa(\alpha)), \ldots,(1, \kappa(\alpha))$ block-source.

In other words exists i_{0} such that

$$
\operatorname{Pr}_{\substack{z_{1} \circ \cdots \circ z_{i_{0}-1} \\ a_{1}, a_{2} \in \mathbb{E} \\ j \in[1, \ell]}}\left[H_{\infty}\left(Z_{i_{0}} \mid a_{1} \circ a_{2} \circ j \circ z_{1} \circ \cdots \circ z_{i_{0}-1}\right)<\kappa(\alpha)\right] \geq \beta
$$

Or even more explicitly

$$
\operatorname{Pr}\left[a_{1}, a_{2}, j: \operatorname{Pr}\left[Z_{i_{0}} \mid a_{1}, a_{2}, j, z_{1} \circ \cdots \circ z_{i_{0}-1}\right] \geq \frac{1}{2}+\alpha\right] \geq \beta
$$

How to reconstruct f from output?

$a_{1}-i_{0}$	a_{2}	j	$z_{1} \ldots, z_{i_{0}-1}$	$?$	\cdots
f_{1} \mapsto $z_{1} \ldots, z_{i_{0}-1}$ $z_{i_{0}}^{1}$ f_{2} \mapsto $z_{1} \ldots, z_{i_{0}-1}$ $z_{i_{0}}^{2}$ \vdots \vdots \vdots \vdots f_{r} \mapsto $z_{1} \ldots, z_{i_{0}-1}$ $z_{i_{0}}^{r}$					

- Consider set of all polynomials that are consistent with prefix $z_{1} \ldots z_{i_{0}-1}$

$$
X_{j, z_{1} \ldots z_{i_{0}-1}}=\left\{f \in \mathcal{M}: \mathbf{C}\left(f\left(a_{1}-i_{0}+i, a_{2}\right)\right)_{j}=z_{i}, i=1, \ldots, i_{0}-1\right\}
$$

- Predict the next bit $z_{i_{0}}=\mathbf{C}\left(f\left(a_{1}, a_{2}\right)\right)_{j}$ by majority voting.

How to predict an $f\left(a_{1}, a_{2}\right)$?

Aim: Minimise the number of evaluations of $f \in X$.

- Compute values $f\left(a_{1}-i_{0}+1, a_{2}\right), \ldots, f\left(a_{1}-1, a_{2}\right)$ and corresponding output bits $z_{1}(j), \ldots, z_{i_{0}-1}(j)$ of the output | $a_{1}-i_{0}$ | a_{2} | j | \ldots |
| :--- | :--- | :--- | :--- |
- Find $X_{j, z_{0}(j) \ldots z_{i_{0}-1}(j)}$ use majority voting to guess the next bit $z_{i_{0}}(j)$.
- Form a codeword $z=z_{i_{0}}(1) \ldots z_{i_{0}}(\ell)$ and use list decoding to find all $g \in \mathcal{M} \cap X$ such that

$$
\mathbf{E P}=\left\{g\left(a_{1}, a_{2}\right): H\left(\mathbf{C}\left(g\left(a_{1}, a_{2}\right)\right), z\right) \leq\left(\frac{1}{2}-\frac{\alpha \beta}{4}\right) \ell\right\}
$$

- Output EP.

What is the probability of a correct guess?

Consider: $a_{1}, a_{2} \in \mathbb{F}_{q}, j \in[1, \ell]$ and a prefix $z_{1}(j) \ldots z_{i_{0}}(j)$
(a) Block source fails $H_{\infty}\left(Z_{i_{0}} \mid a_{1} \circ a_{2} \circ j \circ z_{1}(j) \ldots z_{i_{0}-1}(j)\right)<\kappa(\alpha)$
$\operatorname{Pr}\left[z_{i_{0}}\right.$ coincides with majority \mid failure $]=$?
(b) Block source works $H_{\infty}\left(Z_{i_{0}} \mid a_{1} \circ a_{2} \circ j \circ z_{1}(j) \ldots z_{i_{0}-1}(j)\right)>\kappa(\alpha)$

$$
\operatorname{Pr}\left[z_{i_{0}} \text { coincides with majority } \mid \neg \text { failure }\right]=?
$$

(c) As the failure probability is less than β

$$
\operatorname{Pr}\left[z_{i_{0}} \text { coincides with majority }\right] \geq ?
$$

Working with averages

As $\operatorname{Pr}_{a_{1}, a_{2}, j}\left[z_{i_{0}}\right.$ coincides with majority $] \geq \frac{1}{2}+\alpha \beta$
(a) Show that there exists $X^{\prime} \subset X$ such that
$-\left|X^{\prime}\right| \geq \frac{\alpha \beta}{2}|X|$;
$-\operatorname{Pr}_{a_{1}, a_{2}, j}\left[z_{i_{0}}\right.$ coincides with majority $\left.\mid f \in X^{\prime}\right] \geq \frac{1}{2}+\frac{\alpha \beta}{2}$
(b) Show that $H\left(\mathbf{C}\left(f\left(a_{1}, a_{2}\right)\right), z\right)<\frac{\alpha \beta}{4}$ is not rare

$$
\underset{a_{1}, a_{2}}{\operatorname{Pr}}\left[\operatorname{Pr}\left[z_{i_{0}} \text { coincides with majority } \mid f \in X^{\prime}\right] \geq \frac{1}{2}+\frac{\alpha \beta}{4}\right]>\frac{\alpha \beta}{4}
$$

Short summary

Exists a mythical set X^{\prime} such that

- $\left|X^{\prime}\right| \geq \frac{\alpha \beta}{2}|X|$;
- $\operatorname{Pr}\left[f \in \mathbf{E P} \mid f \in X^{\prime}\right] \geq \frac{\alpha \beta}{4}$.

Cleverly chosen list-decoding property $\frac{\alpha \beta}{4}$ assures that $|\mathbf{E P}|=\mathcal{O}\left(\frac{1}{\alpha^{2} \beta^{2}}\right)$.
The computation takes ages, but we do not care.

A short description of f restricted to a line

Description of f_{L} :

- List tuples of values $f\left(a_{1}-i_{0}+1, a_{2}\right), \ldots, f\left(a_{1}-1, a_{2}\right)$ for h line points $L(1), \ldots L(h)$. The number of values is less than $(m-1) h$.
- Give index i of correct polynomial f_{L} in the set of all consistent candidates G. We prove that $|G|=\mathcal{O}\left(\frac{1}{\alpha^{3} \beta^{3}}\right)$.

Decoding procedure

- Use polynomial interpolation to restore values at all points

$$
f\left(a_{1}-i_{0}+1, a_{2}+j\right), \ldots, f\left(a_{1}-1, a_{2}+j\right) \quad j \in \mathbb{F}_{q}
$$

- Compute predictor sets $S_{j}=\mathbf{E P}(L(j)), j \in \mathbb{F}_{q}$.
- Compute the list G of all univariate polynomials that are consistent at least with $\frac{\alpha \beta}{8} q$ sets.
- Output the i th polynomial or \perp if $i=0$.

When does decoding fail if $f \in X^{\prime}$?

Given a random line L over the $\mathbb{F}_{q} \times \mathbb{F}_{q}$ the failure probability is $\mathcal{O}\left(\frac{1}{\alpha \beta q}\right)$. Proof.

- Let $Y_{i}=[f(L(i)) \in \mathbf{E P}(L(i))]$ and $Y=Y_{1}+\cdots+Y_{q}$.
- Now $E(Y) \geq \frac{\alpha \beta q}{4}$ and $D(Y)=\mathcal{O}(\alpha \beta q)$.
- Chebyshev inequality gives

$$
\operatorname{Pr}\left[Y \leq \frac{\alpha \beta q}{8}\right] \leq \mathcal{O}\left(\frac{1}{\alpha \beta q}\right)
$$

How large is the set of all candidates G ?

- We know that $\left|S_{j}\right|=\mathcal{O}\left(\frac{1}{\alpha^{2} \beta^{2}}\right)$ and $q=\Omega\left(\frac{h}{\alpha^{4} \beta^{4}}\right)$.
- A nice interpolation lemma by Sudan assures that $|G|=\mathcal{O}\left(\frac{1}{\alpha^{3} \beta^{3}}\right)$.
- The result follows from clever trade-off between q and h.

A short description of f

Description of f :

- Choose a line L. Compute corresponding description.
- Advance line one step forward, i.e. $L=L+(1,0)$. Compute description. Store only the index i of the correct candidate polynomial.
- Repeat second step $h-1$ times.

Recovery procedure

Decoding:

- Restore the first line f_{L} or output \perp on failure.
- Set $L=L+(1,0)$ and restore f_{L} using precomputed values of $f\left(a_{1}-i, a_{2}\right)$ or halt with \perp on failure.
- Repeat second step $h-1$ times.
- Interpolate f over horizontal lines.

When does decoding fail if $f \in X^{\prime}$?

Given a random line L over the $\mathbb{F}_{q} \times \mathbb{F}_{q}$ the failure probability is $\mathcal{O}\left(\frac{h}{\alpha \beta q}\right)$. The latter can be made less than $\frac{1}{2}$ by tuning the parameters q, h and α.

Proof. Union bound.

There exist a line L and set X^{*} such that decoding is always successful and $\left|X^{*}\right| \geq \frac{1}{2}\left|X^{\prime}\right|$

Proof. Summation reordering technique.

The Promised Contradiction

Information-theoretic bound

The number of description states is bounded by

$$
q^{(m-1) h} \times \mathcal{O}\left(\frac{1}{\alpha^{3} \beta^{3}}\right)^{h}=q^{(m-1) h} o(q)^{h}=\frac{\alpha \beta}{4} o\left(q^{m h}\right) .
$$

Thus $|X| \leq \frac{4}{\alpha \beta}\left|X^{*}\right|=o\left(q^{m h}\right)$.
Thus if we assume that $|X| \geq q^{m h}$, we get the promised β-almost block source.

Adjusting the first input

- Let $m \leq \sqrt{n}$ then we can find an embedding from $\{0,1\}^{n} \rightarrow \mathcal{M}$ and we are done.
- After some calculations one can deduce $t=2 \log q+\log \ell$ is actually less than $\log n+\mathcal{O}\left(\log \frac{1}{\alpha \beta}\right)$.
- Some clever tweaking with parameters gives the following theorem.

Theorem 1. For every $m=m(n), k=k(n)$ and $\epsilon=\epsilon(n) \leq 1 / 2$ such that $3 m \sqrt{n} \log (n / \epsilon) \leq k \leq n$ there exist an explicit family of (k, ϵ) strong extractors $E_{n}:\{0,1\}^{n} \times\{0,1\}^{t} \rightarrow\{0,1\}^{m}$ with $t=\log n+\mathcal{O}(\log m)+$ $\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$

Post-processing. Multivariate polynomials

By Post-processing one can slightly improve the result.

Code	Min-entropy k	Additional randomness t	m
Two-variate No preprocessing	$3 m \sqrt{n} \log (n / \epsilon)$	$\log n+\mathcal{O}(\log m)$ $+\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$	m
Two-variate with preprocessing	$m \sqrt{n} \log ^{2} n$	$\log n+\mathcal{O}\left(\log ^{*} m\right)$	m
Multi-variate with preprocessing	$n^{1 / c} m$	$\log n+\mathcal{O}\left(c^{2} \log m\right)$	$\Omega(k)$
Multi-variate with preprocessing	$\Omega(n)$	$\log n+\log \log n$	$\Omega(k)$

State of the art

Enhancement of TZS extractor by Shaltiel and Umans gives better results.

Min-entropy k	Pure randomness t	Output size m
$\log \mathcal{O}^{\mathcal{O}(1 / \delta)} n$	$\mathcal{O}(\log n)$	$k^{1-\delta}$
$\log \mathcal{O}^{\mathcal{O}(1 / \delta)} n$	$(1+\delta) \log n$	$k^{\Omega(\delta)}$
any	$(1+\alpha) \log n$	$k /\left(\log \mathcal{O}^{\mathcal{O}(1 / \alpha)} n\right)$

