Extractors from Reed-Muller codes

Sven Laur swen@math.ut.ee

Helsinki University of Technology

Brief outline

- Quick recap of coding theory
 - Reed-Muller codes
 - State of the art binary codes
- Alternative view to randomness
 - Block-sources with low conditional min-entropy
 - Block-sources with small failure probability
- Close look to the engine under the hood
 - TZS-construction
 - Double counting proof technique
- Bells and whistles—wrapper for binary inputs

Essentials of Reed-Muller codes

Consider all multivariate polynomials $f : \mathbb{F}_q^d \to \mathbb{F}_q$ with $\deg f \leq h$.

$$\mathcal{M} = \{ f \in \mathbb{F}_q[x_1, \dots, x_d] : \deg f \le h \}$$

Now, fix a clever set $\mathcal{S} \subseteq \mathbb{F}_q^d$. To code $f \in \mathcal{M}$ evaluate f on \mathcal{S} , i.e.

$$\mathcal{M} \ni f \longmapsto (f(s_1), \dots, f(s_k)) \in \mathbb{F}_q^k$$

TRIVIA: If $\mathcal{S} = \mathbb{F}_q^d$ then

- code length is q^d ;
- code dimension $\binom{h+d}{d}$.

State of the art binary codes

We need really sparse codes that are efficiently constructible.

Combinatorial list decoding property

A code has combinatorial list decoding property $\boldsymbol{\alpha}$

• if every Hamming ball of relative radius $\frac{1}{2} - \alpha$ has $\mathcal{O}(1/\alpha^2)$ codewords.

There are polynomial-time constructible [n, k] codes with combinatorial list decoding property α , where $n = O(k/\alpha^4)$.

Uniform distribution has no memory!

Consider a partition of random random source into blocks $Z = Z_1 \circ \cdots \circ Z_b$. How much information we gain if we know $Z_1 \circ \cdots \circ Z_{i-1}$?

$$k_i(z_1 \circ \cdots \circ z_{i-1}) = H_{\infty}(Z_i | z_1 \circ \cdots \circ z_{i-1})$$

Block source

Random source Z is a $(n_1, k_1), \ldots, (n_b, k_b)$ block source iff

$$k_i = \max_{z_1 \circ \cdots \circ z_{i-1}} H_{\infty}(Z_i | z_1 \circ \cdots \circ z_{i-1}) \qquad i = 1, \dots, b.$$

- In case of uniform distribution and $k_i = n_i$.
- Hence the values k_i characterise how far is the distribution from uniform.

Block sources with small failures

Block source with tolerated failure β

Random source Z is a $(n_1, k_1), \ldots, (n_b, k_b) \beta$ -almost block source iff

$$\Pr_{z_1 \circ \cdots \circ z_{i-1}} \left[H_{\infty}(Z_i | z_1 \circ \cdots \circ z_{i-1}) < k_i \right] \le \beta \qquad i = 1, \dots, b.$$

Lemma 1. A β -almost $(n_1, k_1), \ldots, (n_\beta, k_b)$ block source is $b\beta$ close to $(n_1, k_1), \ldots, (n_\beta, k_b)$ block source.

Proof. Standard hybrid argument technique:

- Substitute failures with uniform distribution.
- Do some simple calculations to verify result.

Block sources with large min-entropies

Lemma 2. A $(1, \kappa(\alpha)), \ldots, (1, \kappa(\alpha))$ block source with $2^{-\kappa(\alpha)} = \frac{1}{2} + \alpha$ is ba close to the uniform distribution.

Proof. Standard hybrid argument technique:

- Substitute blocks one by one with uniform distribution.
- Do some simple calculations to verify result.

Corollary 1. A β -almost $(1, \kappa(\alpha)), \ldots, (1, \kappa(\alpha))$ block source with $2^{-\kappa(\alpha)} = \frac{1}{2} + \alpha$ is $b(\alpha + \beta)$ close to uniform distribution.

Extractor specification

Standard extractor

- Random source X has a min-entropy $H_{\infty}(X) \ge k$.
- Random source Y is uniform.
- Output source Z is close to uniform.

Strong extractor

- Random source X has a min-entropy $H_{\infty}(X) \ge k$.
- Random source Y is uniform.
- Output source $Y \circ Z$ is close to uniform.

TZS extractor. Type specification

We construct a strong extractor where

• X ranges over all two-variate Reed-Muller polynomials

$$\mathcal{M} = \{ f \in \mathbb{F}_q[x_1, x_2] : \deg f < h \} ;$$

• Y ranges uniformly over triples

$$(a_1, a_2, j) \in \mathbb{F}_q \times \mathbb{F}_q \times [1, \ell];$$

• output Z is m bit string.

TZS extractor. Auxiliary structures

Given two error parameters:

- α min-entropy bound to a bit, i.e. $2^{-\kappa(\alpha)} = \frac{1}{2} + \alpha$;
- failure bound β on block source.

We can set

- q to the first prime $q \ge \Omega\left(\frac{h}{\alpha^4 \beta^4}\right)$;
- C to linear binary code of dimension $d = \lceil \log q \rceil$ with combinatorial list decoding property $\frac{\alpha\beta}{4}$;
- ℓ to the code-length of C.

TZS extractor. Construction

<u>Given</u>: $f \in \mathcal{M}$ and $(a_1, a_2, j) \in \mathbb{F}_q \times \mathbb{F}_q \times [1, \ell]$ <u>Output</u>: a bit string $z = z_1, \ldots z_m$ such that

Visualisation

$$z_i = \mathbf{C} (f(a_1 + i, a_2))_j$$
 $i = 1, \dots, m.$

General framework

Function E is (k, ϵ) strong extractor iff for any distribution X over \mathcal{M}

$$H_{\infty}(X) \ge k \qquad \Rightarrow \qquad \mathsf{SDiff}(U_Y \circ E(X, U_Y) || U_Z) \le \epsilon.$$

Necessary and sufficient test

Choose $X \subseteq \mathcal{M}$ such that $|X| \ge 2^k$ and use uniform distribution over X. Show that

$$\mathsf{SDiff}(U_Y \circ E(U_X, U_Y) || U_Z) \le \epsilon$$

or alternatively

$$\mathsf{SDiff}(U_Y \circ E(U_X, U_Y) || U_Z) > \epsilon \qquad \Rightarrow \qquad |X| < 2^k.$$

Double counting argument

<u>Assume</u> that $U_Y \circ E(U_X, U_Y)$ is not a block source with:

- relatively small failure probability β ;
- min-entropy bound $\kappa(\alpha)$ such that $2^{-\kappa(\alpha)} = \frac{1}{2} + \alpha$.

Deduce a contradiction

- Derive a short description for some polynomials $f \in X^* \subseteq X$.
- Show that polynomials with short description form a large fraction of X.
- Compute the information-theoretical upper bound to $|X^*|$.
- Expose the contradiction in sizes.

Setting the stage

<u>To get a contradiction</u> assume that the output $U_Y \circ E(U_X, U_Y)$ is not β -almost $(\star, \star), (1, \kappa(\alpha)), \ldots, (1, \kappa(\alpha))$ block-source.

In other words exists i_0 such that

$$\Pr_{\substack{z_1 \circ \cdots \circ z_{i_0} - 1 \\ a_1, a_2 \in \mathbb{F}_q \\ j \in [1,\ell]}} \left[H_{\infty}(Z_{i_0} | a_1 \circ a_2 \circ j \circ z_1 \circ \cdots \circ z_{i_0-1}) < \kappa(\alpha) \right] \ge \beta.$$

Or even more explicitly

$$\Pr\left[a_1, a_2, j : \Pr\left[Z_{i_0} | a_1, a_2, j, z_1 \circ \dots \circ z_{i_0 - 1}\right] \ge \frac{1}{2} + \alpha\right] \ge \beta.$$

How to reconstruct f from output?

• Consider set of all polynomials that are consistent with prefix $z_1 \dots z_{i_0-1}$

$$X_{j,z_1...z_{i_0-1}} = \left\{ f \in \mathcal{M} : \mathbf{C} \left(f(a_1 - i_0 + i, a_2) \right)_j = z_i, \ i = 1, \dots, i_0 - 1 \right\}$$

• Predict the next bit $z_{i_0} = \mathbf{C} (f(a_1, a_2))_j$ by majority voting.

How to predict an $f(a_1, a_2)$?

<u>Aim</u>: Minimise the number of evaluations of $f \in X$.

- Compute values $f(a_1 i_0 + 1, a_2), \ldots, f(a_1 1, a_2)$ and corresponding output bits $z_1(j), \ldots, z_{i_0-1}(j)$ of the output $a_1 i_0 | a_2 | j | \ldots$
- Find $X_{j,z_0(j)\dots z_{i_0-1}(j)}$ use majority voting to guess the next bit $z_{i_0}(j)$.
- Form a codeword $z = z_{i_0}(1) \dots z_{i_0}(\ell)$ and use list decoding to find all $g \in \mathcal{M} \cap X$ such that

$$\mathbf{EP} = \left\{ g(a_1, a_2) : H(\mathbf{C}(g(a_1, a_2)), z) \le \left(\frac{1}{2} - \frac{\alpha\beta}{4}\right) \ell \right\}$$

• Output EP.

What is the probability of a correct guess?

Consider: $a_1, a_2 \in \mathbb{F}_q$, $j \in [1, \ell]$ and a prefix $z_1(j) \dots z_{i_0}(j)$

(a) Block source fails $H_{\infty}(Z_{i_0}|a_1 \circ a_2 \circ j \circ z_1(j) \dots z_{i_0-1}(j)) < \kappa(\alpha)$

 $\Pr[z_{i_0} \text{ coincides with majority}|\text{failure}] = ?$

(b) Block source works $H_{\infty}(Z_{i_0}|a_1 \circ a_2 \circ j \circ z_1(j) \dots z_{i_0-1}(j)) > \kappa(\alpha)$

 $\Pr[z_{i_0} \text{ coincides with majority} | \neg \text{failure}] = ?$

(c) As the failure probability is less than β

 $\Pr[z_{i_0} \text{ coincides with majority}] \geq ?$

Working with averages

- As $\Pr_{a_1,a_2,j} \left[z_{i_0} \text{coincides with majority} \right] \geq \frac{1}{2} + \alpha \beta$
- (a) Show that there exists $X' \subset X$ such that
 - $|X'| \ge \frac{\alpha\beta}{2} |X|;$
 - $\Pr_{a_1,a_2,j} \left[\ z_{i_0} \text{ coincides with majority} | f \in X' \right] \geq \frac{1}{2} + \frac{\alpha \beta}{2}$
- (b) Show that $H(\mathbf{C}(f(a_1, a_2)), z) < \frac{\alpha\beta}{4}$ is not rare

$$\Pr_{a_1,a_2} \left[\Pr_j \left[z_{i_0} \text{ coincides with majority} | f \in X' \right] \ge \frac{1}{2} + \frac{\alpha \beta}{4} \right] > \frac{\alpha \beta}{4}$$

Short summary

Exists a mythical set X' such that

- $|X'| \ge \frac{\alpha\beta}{2} |X|;$
- $\Pr[f \in \mathbf{EP} | f \in X'] \ge \frac{\alpha\beta}{4}.$

Cleverly chosen list-decoding property $\frac{\alpha\beta}{4}$ assures that $|\mathbf{EP}| = \mathcal{O}\left(\frac{1}{\alpha^2\beta^2}\right)$.

The computation takes ages, but we do not care.

A short description of f restricted to a line

<u>Description</u> of f_L :

- List tuples of values $f(a_1 i_0 + 1, a_2), \ldots, f(a_1 1, a_2)$ for h line points $L(1), \ldots L(h)$. The number of values is less than (m-1)h.
- Give index *i* of correct polynomial f_L in the set of all consistent candidates G. We prove that $|G| = O(\frac{1}{\alpha^3 \beta^3})$.

Decoding procedure

• Use polynomial interpolation to restore values at all points

$$f(a_1 - i_0 + 1, a_2 + j), \dots, f(a_1 - 1, a_2 + j) \qquad j \in \mathbb{F}_q$$

- Compute predictor sets $S_j = \mathbf{EP}(L(j)), \ j \in \mathbb{F}_q.$
- Compute the list G of all univariate polynomials that are consistent at least with $\frac{\alpha\beta}{8}q$ sets.
- Output the *i*th polynomial or \perp if i = 0.

When does decoding fail if $f \in X'$?

Given a random line L over the $\mathbb{F}_q \times \mathbb{F}_q$ the failure probability is $\mathcal{O}(\frac{1}{\alpha\beta q})$. *Proof.*

• Let $Y_i = [f(L(i)) \in \mathbf{EP}(L(i))]$ and $Y = Y_1 + \cdots + Y_q$.

• Now
$$E(Y) \ge \frac{\alpha \beta q}{4}$$
 and $D(Y) = \mathcal{O}(\alpha \beta q)$.

• Chebyshev inequality gives

$$\Pr\left[Y \le \frac{\alpha\beta q}{8}\right] \le \mathcal{O}\left(\frac{1}{\alpha\beta q}\right).$$

How large is the set of all candidates G?

- We know that $|S_j| = \mathcal{O}(\frac{1}{\alpha^2 \beta^2})$ and $q = \Omega(\frac{h}{\alpha^4 \beta^4})$.
- A nice interpolation lemma by Sudan assures that $|G| = O(\frac{1}{\alpha^3 \beta^3})$.
 - The result follows from clever trade-off between q and h.

A short description of \boldsymbol{f}

<u>Description</u> of f:

- Choose a line *L*. Compute corresponding description.
- Advance line one step forward, i.e. L = L + (1,0). Compute description. Store only the index *i* of the correct candidate polynomial.
- Repeat second step h-1 times.

Recovery procedure

Decoding:

- Restore the first line f_L or output \perp on failure.
- Set L = L+(1,0) and restore f_L using precomputed values of f(a₁−i, a₂) or halt with ⊥ on failure.
- Repeat second step h-1 times.
- Interpolate f over horizontal lines.

When does decoding fail if $f \in X'$?

Given a random line L over the $\mathbb{F}_q \times \mathbb{F}_q$ the failure probability is $\mathcal{O}(\frac{h}{\alpha\beta q})$. The latter can be made less than $\frac{1}{2}$ by tuning the parameters q, h and α .

Proof. Union bound.

There exist a line L and set X^* such that decoding is always successful and $|X^*| \geq \frac{1}{2}\,|X'|$

Proof. Summation reordering technique.

The Promised Contradiction

Information-theoretic bound

The number of description states is bounded by

$$q^{(m-1)h} \times \mathcal{O}\left(\frac{1}{\alpha^3\beta^3}\right)^h = q^{(m-1)h}o(q)^h = \frac{\alpha\beta}{4}o(q^{mh}).$$

Thus $|X| \leq \frac{4}{\alpha\beta} |X^*| = o(q^{mh}).$

Thus if we assume that $|X| \geq q^{mh}$, we get the promised $\beta\text{-almost block}$ source.

Adjusting the first input

- Let $m \leq \sqrt{n}$ then we can find an embedding from $\{0,1\}^n \to \mathcal{M}$ and we are done.
- After some calculations one can deduce $t = 2 \log q + \log \ell$ is actually less than $\log n + \mathcal{O}(\log \frac{1}{\alpha\beta})$.
- Some clever tweaking with parameters gives the following theorem.

Theorem 1. For every m = m(n), k = k(n) and $\epsilon = \epsilon(n) \leq 1/2$ such that $3m\sqrt{n}\log(n/\epsilon) \leq k \leq n$ there exist an explicit family of (k, ϵ) strong extractors $E_n : \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ with $t = \log n + \mathcal{O}(\log m) + \mathcal{O}(\log \frac{1}{\epsilon})$

Post-processing. Multivariate polynomials

By Post-processing one can slightly improve the result.

Code	Min-entropy k	Additional randomness t	m
Two-variate	$3m\sqrt{n}\log(n/\epsilon)$	$\log n + \mathcal{O}(\log m)$	m
No preprocessing		$+\mathcal{O}(\log \frac{1}{\epsilon})$	
Two-variate	$m\sqrt{n}\log^2 n$	$\log n + \mathcal{O}(\log^* m)$	m
with preprocessing			
Multi-variate	$n^{1/c}m$	$\log n + \mathcal{O}(c^2 \log m)$	$\Omega(k)$
with preprocessing			
Multi-variate	$\Omega(n)$	$\log n + \log \log n$	$\Omega(k)$
with preprocessing			

State of the art

Enhancement of TZS extractor by Shaltiel and Umans gives better results.

Min-entropy k	Pure randomness t	Output size m
$\log^{\mathcal{O}(1/\delta)} n$	$\mathcal{O}(\log n)$	$k^{1-\delta}$
$\log^{\mathcal{O}(1/\delta)} n$	$(1+\delta)\log n$	$k^{\Omega(\delta)}$
any	$(1+\alpha)\log n$	$k/(\log^{\mathcal{O}(1/\alpha)} n)$