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Brief outline

• Quick recap of coding theory

- Reed-Muller codes

- State of the art binary codes

• Alternative view to randomness

- Block-sources with low conditional min-entropy

- Block-sources with small failure probability

• Close look to the engine under the hood

- TZS-construction

- Double counting proof technique

• Bells and whistles—wrapper for binary inputs
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Essentials of Reed-Muller codes

Consider all multivariate polynomials f : F
d
q → Fq with deg f ≤ h.

M = {f ∈ Fq[x1, . . . , xd] : deg f ≤ h}

Now, fix a clever set S ⊆ F
d
q. To code f ∈ M evaluate f on S, i.e.

M 3 f 7−→ (f(s1), . . . , f(sk)) ∈ F
k
q .

Trivia: If S = F
d
q then

• code length is qd;

• code dimension
(

h+d
d

)

.
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State of the art binary codes

We need really sparse codes that are efficiently constructible.

Combinatorial list decoding property

A code has combinatorial list decoding property α

• if every Hamming ball of relative radius 1
2 − α has O(1/α2) codewords.

There are polynomial-time constructible [n, k] codes with combinatorial list
decoding property α, where n = O(k/α4).
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Uniform distribution has no memory!

Consider a partition of random random source into blocks Z = Z1 ◦ · · · ◦Zb.

How much information we gain if we know Z1 ◦ · · · ◦ Zi−1?

ki(z1 ◦ · · · ◦ zi−1) = H∞(Zi|z1 ◦ · · · ◦ zi−1)

Block source

Random source Z is a (n1, k1), . . . , (nb, kb) block source iff

ki = max
z1◦···◦zi−1

H∞(Zi|z1 ◦ · · · ◦ zi−1) i = 1, . . . , b.

• In case of uniform distribution and ki = ni.

• Hence the values ki characterise how far is the distribution from uniform.
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Block sources with small failures

Block source with tolerated failure β

Random source Z is a (n1, k1), . . . , (nb, kb) β-almost block source iff

Pr
z1◦···◦zi−1

[H∞(Zi|z1 ◦ · · · ◦ zi−1) < ki] ≤ β i = 1, . . . , b.

Lemma 1. A β-almost (n1, k1), . . . , (nβ, kb) block source is bβ close to

(n1, k1), . . . , (nβ, kb) block source.

Proof. Standard hybrid argument technique:

• Substitute failures with uniform distribution.

• Do some simple calculations to verify result.

T-79.300 Postgraduate Course in Theoretical Computer Science: Derandomization, November 17, 2004 5



Block sources with large min-entropies

Lemma 2. A (1, κ(α)), . . . , (1, κ(α)) block source with 2−κ(α) = 1
2 + α is

bα close to the uniform distribution.

Proof. Standard hybrid argument technique:

• Substitute blocks one by one with uniform distribution.

• Do some simple calculations to verify result.

Corollary 1. A β-almost (1, κ(α)), . . . , (1, κ(α)) block source with

2−κ(α) = 1
2 + α is b(α + β) close to uniform distribution.
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Extractor specification

X

Y

Z

E

Standard extractor

• Random source X has a min-entropy H∞(X) ≥ k.

• Random source Y is uniform.

• Output source Z is close to uniform.

X

Y

Z

E

Y ◦

Strong extractor

• Random source X has a min-entropy H∞(X) ≥ k.

• Random source Y is uniform.

• Output source Y ◦ Z is close to uniform.
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TZS extractor. Type specification

We construct a strong extractor where

• X ranges over all two-variate Reed-Muller polynomials

M = {f ∈ Fq[x1, x2] : deg f < h} ;

• Y ranges uniformly over triples

(a1, a2, j) ∈ Fq × Fq × [1, `];

• output Z is m bit string.
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TZS extractor. Auxiliary structures

Given two error parameters:

• α min-entropy bound to a bit, i.e. 2−κ(α) = 1
2 + α;

• failure bound β on block source.

We can set

• q to the first prime q ≥ Ω
(

h
α4β4

)

;

• C to linear binary code of dimension d = dlog qe with combinatorial list
decoding property αβ

4 ;

• ` to the code-length of C.
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TZS extractor. Construction

Given: f ∈ M and (a1, a2, j) ∈ Fq × Fq × [1, `]

Output: a bit string z = z1, . . . zm such that

zi = C (f(a1 + i, a2))j i = 1, . . . , m.

Visualisation

1
2
3

...

`

1 2 · · · m

C
(f

(a
1
+

1,a
2 ))

C
(f

(a
1
+

2,a
2 ))

···

C
(f

(a
1
+

m
,a

2 ))
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General framework

Function E is (k, ε) strong extractor iff for any distribution X over M

H∞(X) ≥ k ⇒ SDiff(UY ◦ E(X, UY )‖UZ) ≤ ε.

Necessary and sufficient test

Choose X ⊆ M such that |X| ≥ 2k and use uniform distribution over X.
Show that

SDiff(UY ◦ E(UX, UY )‖UZ) ≤ ε

or alternatively

SDiff(UY ◦ E(UX, UY )‖UZ) > ε ⇒ |X| < 2k.
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Double counting argument

Assume that UY ◦ E(UX, UY ) is not a block source with:

• relatively small failure probability β;

• min-entropy bound κ(α) such that 2−κ(α) = 1
2 + α.

Deduce a contradiction

• Derive a short description for some polynomials f ∈ X∗ ⊆ X.

• Show that polynomials with short description form a large fraction of X.

• Compute the information-theoretical upper bound to |X∗|.
• Expose the contradiction in sizes.

T-79.300 Postgraduate Course in Theoretical Computer Science: Derandomization, November 17, 2004 12



Setting the stage

To get a contradiction assume that the output UY ◦ E(UX, UY ) is not
β-almost (?, ?), (1, κ(α)), . . . , (1, κ(α)) block-source.

In other words exists i0 such that

Pr
z1◦···◦zi0−1

a1,a2∈Fq
j∈[1,`]

[H∞(Zi0|a1 ◦ a2 ◦ j ◦ z1 ◦ · · · ◦ zi0−1) < κ(α)] ≥ β.

Or even more explicitly

Pr

[

a1, a2, j : Pr [Zi0|a1, a2, j, z1 ◦ · · · ◦ zi0−1] ≥
1

2
+ α

]

≥ β.
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How to reconstruct f from output?

a1 − i0 a2 j z1 . . . , zi0−1 ? · · ·

f1 7→ z1 . . . , zi0−1 z1
i0

f2 7→ z1 . . . , zi0−1 z2
i0... ... ... ...

fr 7→ z1 . . . , zi0−1 zr
i0

• Consider set of all polynomials that are consistent with prefix z1 . . . zi0−1

Xj,z1...zi0−1
=

{

f ∈ M : C (f(a1 − i0 + i, a2))j = zi, i = 1, . . . , i0 − 1
}

• Predict the next bit zi0 = C (f(a1, a2))j by majority voting.

T-79.300 Postgraduate Course in Theoretical Computer Science: Derandomization, November 17, 2004 14



How to predict an f(a1, a2)?

Aim: Minimise the number of evaluations of f ∈ X.

• Compute values f(a1 − i0 + 1, a2), . . . , f(a1 − 1, a2) and corresponding
output bits z1(j), . . . , zi0−1(j) of the output a1 − i0 a2 j . . .

• Find Xj,z0(j)...zi0−1(j) use majority voting to guess the next bit zi0(j).

• Form a codeword z = zi0(1) . . . zi0(`) and use list decoding to find all
g ∈ M∩ X such that

EP =

{

g(a1, a2) : H(C (g(a1, a2)) , z) ≤
(

1

2
− αβ

4

)

`

}

• Output EP.
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What is the probability of a correct guess?

Consider: a1, a2 ∈ Fq, j ∈ [1, `] and a prefix z1(j) . . . zi0(j)

(a) Block source fails H∞(Zi0|a1 ◦ a2 ◦ j ◦ z1(j) . . . zi0−1(j)) < κ(α)

Pr [zi0 coincides with majority|failure] =?

(b) Block source works H∞(Zi0|a1 ◦ a2 ◦ j ◦ z1(j) . . . zi0−1(j)) > κ(α)

Pr [zi0 coincides with majority|¬failure] =?

(c) As the failure probability is less than β

Pr [zi0 coincides with majority] ≥?
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Working with averages

As Pr
a1,a2,j

[zi0coincides with majority] ≥ 1
2 + αβ

(a) Show that there exists X ′ ⊂ X such that

– |X ′| ≥ αβ
2 |X|;

– Pr
a1,a2,j

[ zi0 coincides with majority|f ∈ X ′] ≥ 1
2 + αβ

2

(b) Show that H(C (f(a1, a2)) , z) < αβ
4 is not rare

Pr
a1,a2

[

Pr
j

[zi0 coincides with majority|f ∈ X ′] ≥ 1

2
+

αβ

4

]

>
αβ

4
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Short summary

Exists a mythical set X ′ such that

• |X ′| ≥ αβ
2 |X|;

• Pr [f ∈ EP|f ∈ X ′] ≥ αβ
4 .

Cleverly chosen list-decoding property αβ
4 assures that |EP| = O

(

1
α2β2

)

.

The computation takes ages, but we do not care.
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A short description of f restricted to a line

Description of fL:

• List tuples of values f(a1 − i0 + 1, a2), . . . , f(a1 − 1, a2) for h line points
L(1), . . . L(h). The number of values is less than (m − 1)h.

• Give index i of correct polynomial fL in the set of all consistent candidates
G. We prove that |G| = O

(

1
α3β3

)

.
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Decoding procedure

• Use polynomial interpolation to restore values at all points

f(a1 − i0 + 1, a2 + j), . . . , f(a1 − 1, a2 + j) j ∈ Fq

• Compute predictor sets Sj = EP
(

L(j)
)

, j ∈ Fq.

• Compute the list G of all univariate polynomials that are consistent at
least with αβ

8 q sets.

• Output the ith polynomial or ⊥ if i = 0.
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When does decoding fail if f ∈ X ′?

Given a random line L over the Fq × Fq the failure probability is O
(

1
αβq

)

.

Proof.

• Let Yi = [f(L(i)) ∈ EP(L(i))] and Y = Y1 + · · · + Yq.

• Now E(Y ) ≥ αβq
4 and D(Y ) = O(αβq).

• Chebyshev inequality gives

Pr

[

Y ≤ αβq

8

]

≤ O
(

1

αβq

)

.
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How large is the set of all candidates G?

• We know that |Sj| = O
(

1
α2β2

)

and q = Ω
(

h
α4β4

)

.

• A nice interpolation lemma by Sudan assures that |G| = O
(

1
α3β3

)

.

– The result follows from clever trade-off between q and h.
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A short description of f

Description of f :

• Choose a line L. Compute corresponding description.

• Advance line one step forward, i.e. L = L + (1, 0). Compute description.
Store only the index i of the correct candidate polynomial.

• Repeat second step h − 1 times.
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Recovery procedure

Decoding:

• Restore the first line fL or output ⊥ on failure.

• Set L = L+(1, 0) and restore fL using precomputed values of f(a1−i, a2)
or halt with ⊥ on failure.

• Repeat second step h − 1 times.

• Interpolate f over horizontal lines.
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When does decoding fail if f ∈ X ′?

Given a random line L over the Fq × Fq the failure probability is O
(

h
αβq

)

.

The latter can be made less than 1
2 by tuning the parameters q, h and α.

Proof. Union bound.

There exist a line L and set X∗ such that decoding is always successful and
|X∗| ≥ 1

2 |X ′|

Proof. Summation reordering technique.
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The Promised Contradiction

Information-theoretic bound

The number of description states is bounded by

q(m−1)h ×O
(

1

α3β3

)h

= q(m−1)ho(q)h =
αβ

4
o(qmh).

Thus |X| ≤ 4
αβ |X∗| = o(qmh).

Thus if we assume that |X| ≥ qmh, we get the promised β-almost block
source.
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Adjusting the first input

• Let m ≤ √
n then we can find an embedding from {0, 1}n → M and we

are done.

• After some calculations one can deduce t = 2 log q + log ` is actually less
than log n + O

(

log 1
αβ

)

.

• Some clever tweaking with parameters gives the following theorem.

Theorem 1. For every m = m(n), k = k(n) and ε = ε(n) ≤ 1/2 such

that 3m
√

n log(n/ε) ≤ k ≤ n there exist an explicit family of (k, ε) strong

extractors En : {0, 1}n × {0, 1}t → {0, 1}m
with t = log n + O(log m) +

O(log 1
ε)
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Post-processing. Multivariate polynomials

By Post-processing one can slightly improve the result.

Code Min-entropy k Additional randomness t m
Two-variate 3m

√
n log(n/ε) log n + O(log m) m

No preprocessing +O(log 1
ε)

Two-variate m
√

n log2 n log n + O(log∗ m) m
with preprocessing

Multi-variate n1/cm log n + O(c2 log m) Ω(k)
with preprocessing
Multi-variate Ω(n) log n + log log n Ω(k)
with preprocessing
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State of the art

Enhancement of TZS extractor by Shaltiel and Umans gives better results.

Min-entropy k Pure randomness t Output size m

logO(1/δ) n O(log n) k1−δ

logO(1/δ) n (1 + δ) log n kΩ(δ)

any (1 + α) log n k/(logO(1/α) n)
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