Hash Functions that Avoid Computational Shortcuts

Ahto Buldas

University of Tartu / Tallinn University of Technology / Cybernetica AS

Computations and Trees

$h:\{0,1\}^{k} \times\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ - a binary operation.
$T^{h}\left(x_{1}, \ldots, x_{N}\right)$ - a tree with leaves x_{1}, \ldots, x_{N}. Each non-leaf vertex represents an h-operation. Each variable x_{i} represents an element of $\{0,1\}^{k}$.

Def. A family of trees $T_{k}^{h}\left(v_{1}, \ldots, v_{N(k)}\right)$ (where $v_{i} \in\{0,1\}^{k}$ are fixed) is said to be hard to compute if for every poly-time adversary A the following success probability is negligible:

$$
\operatorname{Pr}\left[h \leftarrow \mathfrak{F}, r \leftarrow \mathrm{~A}\left(1^{k}, h\right): r=T_{k}^{h}\left(v_{1}, \ldots, v_{N(k)}\right)\right] .
$$

Def. (Shortcut-Freeness): A function family $h:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}$ is shortcut-free if every tree family $T_{k}^{h}\left(v_{1}, \ldots, v_{N}\right)$ with $\sharp\left\{v_{1}, \ldots, v_{N}\right\}=$ $2^{k} / k^{O(1)}$ is hard to compute.

Not every function is shortcut-free ...

For example, if $h(x, y)=x \oplus y$ and T_{k}^{\oplus} is the complete binary tree with 2^{k} leaves that represent all possible k-bit strings. This tree is called a complete Merkle tree.

We know that $T_{k}^{\oplus}\left(0, \ldots, 2^{k}-1\right)=0^{k}$, without doing any computations!

Hash Functions and Hash Trees

Let $h=\left\{h_{k}:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}\right\}_{k \in \mathbb{N}}$ be a poly-time computable family of functions that is chosen according to a distribution \mathfrak{F}.

Def. (Collision-Resistance of h). For every poly-time adversary A:
$\operatorname{Pr}\left[h \leftarrow \mathfrak{F},\left(x_{1}, x_{2}\right) \leftarrow \mathrm{A}\left(1^{k}, h\right): x_{1} \neq x_{2}, h\left(x_{1}\right)=h\left(x_{2}\right)\right]=k^{-\omega(1)}$.
Nice overview on security properties of hash functions: see the recent paper by Rogaway and Shrimpton.

A conventional way to think is that cryptographic hash functions are shortcut free, mainly because they are often modelled as random oracles.

In principle, it is not excluded that shortcuts are possible in the case of cryptographic hash functions and this would affect the security of applications (like the time-stamping schemes currently in use).

Hash-Tree Applications: Secure Registry

Verifying a certificate: Compute $y_{2}=F_{h}\left(x_{2} ; c_{2}\right)=h\left(h\left(x_{1}, x_{2}\right), z_{1}\right)$, obtain r_{t}, and check if $y_{2}=r_{t}$.

Back-Dating Attack

Def. (Chain-Resistance of h). For every poly-time $A=\left(A_{1}, A_{2}\right)$ and for every poly-sampleable distribution \mathcal{D} with Rényi entropy $\mathrm{H}_{2}(\mathcal{D})=\omega(\log k)$:

$$
\operatorname{Pr}\left[(r, a) \leftarrow \mathrm{A}_{1}\left(1^{k}\right), x \leftarrow \mathcal{D}, c \leftarrow \mathrm{~A}_{2}(x, a): F_{h}(x, c)=r\right]=k^{-\omega(1)} .
$$

How to Construct Chain-Resistant Functions?

A recent negative result (Buldas et al, 2004):
" h is collision-resistant $\Rightarrow h$ is chain-resistant" cannot be proved in a (conventional) black-box way.

It is an open question whether chain-resistant functions can be constructed (in a black-box way) from the collision-resistant ones.

First result of this work: If $h:\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}$ is collision-resistant and shortcut-free, then h is chain-resistant.

Still no idea how to construct shortcut-free functions...
Second result of this work (a tiny step towards shortcut-freeness): We construct a hash-function for which the complete Merkle tree is hard to compute.

Proof of the First Result (a Sketch)

Let $A=\left(A_{1}, A_{2}\right)$ be a chain-finding adversary for h (a collision-resistant hash function) with success probability
$\delta(k)=\operatorname{Pr}\left[(r, a) \leftarrow \mathrm{A}_{1}\left(1^{k}\right), x \leftarrow \mathcal{D}, c \leftarrow \mathrm{~A}_{2}(x, a): F_{h}(x, c)=r\right] \neq k^{-\omega(1)}$.

We show that with high probability, there is a tree $T_{k}^{h}\left(v_{1}, \ldots, v_{N}\right)=r$ with $\sharp\left\{v_{1}, \ldots, v_{N}\right\}=2^{k} / k^{O(1)}$. Collision-resistance is essential in this step!

Putting all trees T_{k}^{h} together, we obtain a tree-family which is computable with non-negligible probability. Hence, h is not shortcut-free.

Proof of the Second Result (a Sketch)

Let $h:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ be a collision-resistant hash function.

- We construct a new hash $H=P^{h}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$, where $n=6 k$
- The root of the complete Merkle tree M^{H} contains (with high probability) a collision for h
- Hence, the root of M^{H} must be hard to compute, because h is collisionfree!

Main idea of the construction:

- Massive iteration of H can be used to compute global minima and maxima of certain (cleverly chosen) functions $f^{h}:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$
- Global minimum (maximum) operation can be used to invert h
- Inverting h can be used to find collisions for h

How to find global minimum for a function F ?

Then $\mathrm{M}_{k+1}^{H}\left(0, \ldots, 2^{k+1}-1\right)=\min _{x} F(x)$.

Inverting f by using max and min

For any $f:\{0,1\}^{k} \rightarrow\{0,1\}^{k}$ define functions $F_{f}^{\min }$ and $F_{f}^{\max }$ of type $\{0,1\}^{2 k} \rightarrow\{0,1\}^{k}$ as follows:
$F_{f}^{\text {min }}(x, y)=\left\{\begin{array}{ll}1^{k} & \text { if } f(x) \neq y \\ x & \text { if } f(x)=y\end{array} \quad F_{f}^{\text {max }}(x, y)= \begin{cases}0^{k} & \text { if } f(x) \neq y \\ x & \text { if } f(x)=y\end{cases}\right.$
Let $y \in\{0,1\}^{k}$ be a fixed bitstring. It is clear that

$$
\min _{x} F_{f}^{\min }(x, y)= \begin{cases}1^{k} & \text { if } y \notin f\left(\{0,1\}^{k}\right) \\ \min f^{-1}(y) & \text { if } y \in f\left(\{0,1\}^{k}\right)\end{cases}
$$

and

$$
\max _{x} F_{f}^{\max }(x, y)= \begin{cases}0^{k} & \text { if } y \notin f\left(\{0,1\}^{k}\right) \\ \max f^{-1}(y) & \text { if } y \in f\left(\{0,1\}^{k}\right)\end{cases}
$$

Finding collisions for h by using min and max

Take two distinct bit-strings $c_{1}, c_{2} \in\{0,1\}^{k}$ and try to invert $f_{1}(\cdot)=$ $h\left(\cdot, c_{1}\right)$ and $f_{2}(\cdot)=h\left(\cdot, c_{2}\right)$ realtive to $x^{\prime} \leftarrow\{0,1\}^{k}$. For f_{1} we obtain

$$
x_{1}^{\min }=\min _{x} F_{f_{1}}^{\min }\left(x, f_{1}\left(x^{\prime}\right)\right), \quad x_{1}^{\max }=\max _{x} F_{f_{1}}^{\max }\left(x, f_{1}\left(x^{\prime}\right)\right)
$$

With probability $1, f_{1}\left(x^{\prime}\right)=f\left(x_{1}^{\min }\right)=f\left(x_{1}^{\max }\right)$.

In case both f_{1} and f_{2} are "almost permutations", i.e.
$\operatorname{Pr}\left[\left|f_{1}^{-1}\left(f_{1}\left(x^{\prime}\right)\right)\right| \geq 2\right]=k^{-\omega(1)} \quad$ and $\operatorname{Pr}\left[\left|f_{1}^{-1}\left(f_{1}\left(x^{\prime}\right)\right)\right| \geq 2\right]=k^{-\omega(1)}$ then with high probability, f_{1} and f_{2} can be inverted simultaneously on a uniformly selected output $y \leftarrow\{0,1\}^{k}$.

All in all, the probability of finding a collision for h is at least $\frac{1}{3}$.

Construction of H

Let $z \in\{0,1\}^{k}$ and for $i=1,2$ define
$\varphi_{z}^{i, \text { min }}(x)=\left\{\begin{array}{ll}1^{k} & \text { if } f_{i}(x) \neq z \\ x & \text { if } f_{i}(x)=z .\end{array} \quad \varphi_{z}^{i, \max }(x)= \begin{cases}0^{k} & \text { if } f_{i}(x) \neq z \\ x & \text { if } f_{i}(x)=z .\end{cases}\right.$
For $i=1,2$ define $h_{z}^{i, \text { min }}:\{0,1\}^{2(k+1)} \rightarrow\{0,1\}^{k+1}$ as follows:
$h_{z}^{i, \min }\left(x\left\|b_{1}, y\right\| b_{2}\right)= \begin{cases}\min \left\{\varphi_{z}^{i, \min }(x), \varphi_{z}^{i, \min }(y)\right\} \| 1 & \text { if } b_{1}=b_{2}=0 \\ \min \{x, y\} \| 1 & \text { if } b_{1}=b_{2}=1 \\ 1^{k+1} & \text { otherwise. }\end{cases}$
$h_{z}^{i, \max }\left(x\left\|b_{1}, y\right\| b_{2}\right)= \begin{cases}\min \left\{\varphi_{z}^{i, \max }(x), \varphi_{z}^{i, \max }(y)\right\} \| 1 & \text { if } b_{1}=b_{2}=1 \\ \min \{x, y\} \| 0 & \text { if } b_{1}=b_{2}=0 \\ 0^{k+1} & \text { otherwise. }\end{cases}$
Define: $H_{z}=h_{f(z)}^{1, \text { min }} \times h_{f(z)}^{1, \text { max }} \times h_{f(z)}^{2, \text { min }} \times h_{f(z)}^{2, \text { max }} \times h_{z}^{1, \text { min }} \times h_{z}^{2, \max }$

Conclusions

There seem to be no easy ways of "abusing" non-complete hash trees T^{H} for finding collisions for h in a similar way ...

How to construct $H=P^{h}$ so that a massive iteration of H always (or with high probability) gives a collision for h ?

Can we find "natural" (local,statistical,...) properties of h that (together with collision-resistance) imply chain-resistance.

