
A Type System for Computationally
Secure Information Flow

Peeter Laud

Tartu University & Cybernetica AS

joint work with Varmo Vene

Teooriapäevad Kokel, 04.-06.02.2005 – p. 1/21

Problem statement

We have a program. It takes some inputs and produces
some outputs.

Some inputs and outputs are private, others are public.

We want the private inputs to not detectably influence
the public outputs.

The program uses cryptographic operations to hide
information.

We may allow such information flows from secret inputs
to public outputs that require unreasonable resources to
take advantage of.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 2/21

Programs

P ::= x := o(x1, . . . , xk)

| skip

| P1; P2

| if b then P1 else P2

| while b do P1

Let Var be the set of variables. Let VarS ⊆ Var be the
set of initially secret variables and VarP ⊆ Var the set
of variables whose final values are made public.

o may be Enc, Gen or some other operation.
Gen (nullary) — generates a new encryption key;
Enc (binary) — symmetric encryption;
decryption is not handled specially.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 3/21

Security

A program has computationally secure information flow
(csif) if its secret inputs are computationally
independent from its public outputs.

An adversary presented with initial values of VarS

and final values of VarP must be unable to decide
whether these values come from the same run of the
program.

The encryption system must be
message-length-concealing;
key-identity-concealing;
secure against chosen plaintext attacks.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 4/21

Static methods for checking csif

Abstract interpretation
data-flow analysis

Type systems

(computer-aided) theorem proving

. . .

Teooriapäevad Kokel, 04.-06.02.2005 – p. 5/21

On typing

A typing γ assigns a type to each variable.
(A part of) these types shows what kind of
information may have influenced the contents of
these variables.

Types are partially ordered (the set of types is a lattice).
Going higher means more influences.
There is a type h denoting the secret information.

There are inference rules that allow us to decide
whether a given typing is correct.

Correctness theorem: if a program has a typing γ such
that γ(x) ≥ h for all h ∈ VarS and

∨

x∈VarP

γ(x) 6≥ h then

the program has csif.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 6/21

Information types

These types record whether a variable may contain
information about secret inputs or keys.

We also want to know, which keys a variable may
depend on.

Basic types: T0 = {h} ∪ G.
G is the set of all program points containing key
generation statements.
g ∈ G corresponds to keys generated at the g-th key
generation statement.
Cannot distinguish different keys generated at the
same program point.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 7/21

Information types

T1 = {tN | t ∈ T0, N ⊆ G}.

A variable of type tN may contain the information of
type t, but it is encrypted with keys generated at
program points in N .

Ordering: tN ≤ tN ′ if N ⊇ N ′.

The main kind of types: T2 = P(T1).

If γ(x) = {t1, . . . , tn}, where t1, . . . , tn ∈ T1, then x may
contain information of each of the types t1, . . . , tn.

Ordering: T ≤ U if ∀t ∈ T ∃u ∈ U : t ≤ u.
≤ is reflexive and transitive, but not antisymmetric.
Factorize with ≤ ∩ ≥.
This amounts to deleting all non-maximal elements
of a type in T2.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 8/21

Normalization in T2

The types T ∈ T2 must be normalized, in order to take
into account that keys may be used.

This normalization moves upwards in the lattice.

For example: {h{1,2}, 1∅} can be simplified to {h{2}, 1∅}.

i.e. h{2} may be added to the original set.

More interesting cases:
{1{1}} may be simplified to {1∅}.

{1{2}, 2{3}, . . . , (n − 1){n}, n{1}} may be simplified to
{1∅, . . . , n∅}.

These correspond to removal of encryption cycles.

The security of encryption cycles does not follow from
the security against chosen plaintext attacks.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 9/21

Usage types

We have to record whether some data can be used as
an encryption key.

Types:
Key{i1,...,in} — a key created in one of the program
points i1, . . . , in;
Data — a non-key.

γ(x) — a pair 〈T,K〉 of information type and usage type.

〈T,K〉 ≤ 〈T ′,K ′〉 if
K = K ′ = Data and T ≤ T ′;
K = KeyN , K ′ = KeyN ′, N ⊆ N ′ and T ≤ T ′;
K = Key{i1,...,in}, K ′ = Data and
T ∨ {i1∅, . . . , in∅} ≤ T ′.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 10/21

Inference rules

Something like

γ(x) = 〈T,Data〉 γ(xi) ≤ 〈T,Data〉

γ ` x := o(x1, . . . , xk) : T cmd

i.e. type of the RHS must be smaller than the type of
the LHS; the result is a program that does not assign to
variables with types less than T .

We will not present all the inference rules here.

Instead, we show what constraints these rules impose
upon γ.

This could probably be developed to a type inference
algorithm.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 11/21

General assignments

b

x xkx1o(:=)

if

〈Tx,Kx〉

〈Tb,Kb〉

〈T1,K1〉

〈Tk,Kk〉

= Data

Here → means ≥.

The next slides will present special cases. These are
alternatives to the general scheme.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 12/21

Encryptions

b

x

if

〈Tx,Kx〉

〈Tb,Kb〉

= Data

Enc(:= k y)

tN∪{ij}

〈Tk,Key{i1,...,in}〉

∈
∈

〈T,Data〉

〈Ty,Ky〉

Teooriapäevad Kokel, 04.-06.02.2005 – p. 13/21

Key generations

b

x

if

〈Tx,Kx〉

〈Tb,Kb〉

= KeyN

Gen i:=

〈T,Data〉

3

Teooriapäevad Kokel, 04.-06.02.2005 – p. 14/21

Assigning one key to another

b

x

if

〈Tx,Kx〉

〈Tb,Kb〉

= KeyN

〈T,Data〉

:= y

⊇

〈Ty,KeyNy
〉

Teooriapäevad Kokel, 04.-06.02.2005 – p. 15/21

On proof of correctness

Given a program and a correct typing we construct
another program that

produces public outputs that are indistinguishable
from the original program;
does not access secret inputs.

We construct it by transforming the original program.

Two kinds of transformations:
those that don’t change the semantics at all

proven by showing a bisimulation
those that correspond to the indistinguishability of
certain processes according to the security definition
of the encryption system.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 16/21

Example

k := Gen1

if b then

k′ := k

y := Gen2

else

k′ := Gen3

y := Gen4

z := o(y)

x := Enc(k′, z)

u := Enc(k, z)

Teooriapäevad Kokel, 04.-06.02.2005 – p. 17/21

Example

k := Gen1

if b then

k′ := k

y := Gen2

else

k′ := Gen3

y := Gen4

z := o(y)

x := Enc(k′, z)

u := Enc(k, z)

b:〈{h∅},Data〉

k:〈∅,Key{1}〉

k′:〈{h∅},Key{1,3}〉

y:〈{h∅},Key{2,4}〉

z:〈{h∅, 2∅, 4∅},Data〉

x:〈{h{1}, h{3}, 2{1}, 2{3}, 4{1}, 4{3}},Data〉

u:〈{h{1}, 2{1}, 4{1}},Data〉

Teooriapäevad Kokel, 04.-06.02.2005 – p. 17/21

Another example

k := Gen1

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

while g do

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

Teooriapäevad Kokel, 04.-06.02.2005 – p. 18/21

Another example

k := Gen1

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

while g do

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

s:〈{h∅},Data〉

y:〈∅,Data〉

k:〈∅,Key{1}〉

g:〈{h∅},Data〉

x:〈{h∅},Data〉

Teooriapäevad Kokel, 04.-06.02.2005 – p. 18/21

Another example

k := Gen1

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

while g do

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

s:〈{h∅},Data〉

y:〈∅,Data〉

k:〈∅,Key{1}〉

g:〈{h∅},Data〉

x:〈{h∅},Data〉

If the information carried by the loop guard (g) also went
encrypted into ciphertexts (x), then. . .

Teooriapäevad Kokel, 04.-06.02.2005 – p. 18/21

Encryptions

b

x

if

〈Tx,Kx〉

〈Tb,Kb〉

= Data

Enc(:= k y)

tN∪{ij}

〈Tk,Key{i1,...,in}〉

∈
∈

〈T,Data〉

〈Ty,Ky〉

Teooriapäevad Kokel, 04.-06.02.2005 – p. 19/21

Another example

k := Gen1

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

while g do

x := Enc(k, y)

g := (lsb10(s) 6= lsb10(x))

s:〈{h∅},Data〉

y:〈∅,Data〉

k:〈∅,Key{1}〉

g:〈{h∅},Data〉

x:〈{h{1}},Data〉

If the information carried by the loop guard (g) also went
encrypted into ciphertexts (x), then. . .

Teooriapäevad Kokel, 04.-06.02.2005 – p. 20/21

Conclusions

A Type System for Computationally Secure Information
Flow. . .

is easier to comprehend than data-flow analysis;
is easier to assist than data-flow analysis;
may allow separate analysis of modules.

Teooriapäevad Kokel, 04.-06.02.2005 – p. 21/21

	Problem statement
	Programs
	Security
	Static methods for checking csif
	On typing
	Information types
	Information types
	Normalization in $mathcal {T}_2$
	Usage types
	Inference rules
	General assignments
	Encryptions
	Key generations
	Assigning one key to another
	On proof of correctness
	Example
	Example

	Another example
	Another example
	Another example

	Encryptions
	Another example
	Conclusions

