# A Type System for Computationally Secure Information Flow

Peeter Laud

Tartu University & Cybernetica AS

joint work with Varmo Vene

#### **Problem statement**

- We have a program. It takes some inputs and produces some outputs.
- Some inputs and outputs are private, others are public.
- We want the private inputs to not detectably influence the public outputs.
- The program uses cryptographic operations to hide information.
- We may allow such information flows from secret inputs to public outputs that require unreasonable resources to take advantage of.

# Programs

$$P ::= x := o(x_1, \dots, x_k)$$

$$| skip$$

$$| P_1; P_2$$

$$| if b then P_1 else P_2$$

$$| while b do P_1$$

- Let Var be the set of variables. Let  $Var_S \subseteq Var$  be the set of initially secret variables and  $Var_P \subseteq Var$  the set of variables whose final values are made public.
- o may be  $\mathcal{E}nc$ ,  $\mathcal{G}en$  or some other operation.
  - $\Im en$  (nullary) generates a new encryption key;
  - $\mathcal{E}nc$  (binary) symmetric encryption;
  - decryption is not handled specially.

# **Security**

- A program has computationally secure information flow (csif) if its secret inputs are computationally independent from its public outputs.
  - An adversary presented with initial values of  $\mathbf{Var}_S$  and final values of  $\mathbf{Var}_P$  must be unable to decide whether these values come from the same run of the program.
- The encryption system must be
  - message-length-concealing;
  - key-identity-concealing;
  - secure against chosen plaintext attacks.

# **Static methods for checking csif**

- Abstract interpretation
  - data-flow analysis
- Type systems
- (computer-aided) theorem proving
- **\_** ...

# **On typing**

- A typing  $\gamma$  assigns a type to each variable.
  - (A part of) these types shows what kind of information may have influenced the contents of these variables.
- Types are partially ordered (the set of types is a lattice).
  - Going higher means more influences.
  - There is a type h denoting the secret information.
- There are inference rules that allow us to decide whether a given typing is correct.
- Correctness theorem: if a program has a typing  $\gamma$  such that  $\gamma(x) \ge h$  for all  $h \in \operatorname{Var}_{S}$  and  $\bigvee_{x \in \operatorname{Var}_{P}} \gamma(x) \not\ge h$  then

the program has csif.

# **Information types**

- These types record whether a variable may contain information about secret inputs or keys.
- We also want to know, which keys a variable may depend on.
- Basic types:  $\mathfrak{T}_0 = \{h\} \cup \mathfrak{G}$ .
  - G is the set of all program points containing key generation statements.
  - $g \in \mathcal{G}$  corresponds to keys generated at the *g*-th key generation statement.
  - Cannot distinguish different keys generated at the same program point.

# **Information types**

- A variable of type  $t_N$  may contain the information of type t, but it is encrypted with keys generated at program points in N.
- Ordering:  $t_N \leq t_{N'}$  if  $N \supseteq N'$ .
- The main kind of types:  $\mathfrak{T}_2 = \mathfrak{P}(\mathfrak{T}_1)$ .
- If  $\gamma(x) = \{t_1, \ldots, t_n\}$ , where  $t_1, \ldots, t_n \in \mathcal{T}_1$ , then x may contain information of each of the types  $t_1, \ldots, t_n$ .
- Ordering:  $T \leq U$  if  $\forall t \in T \exists u \in U : t \leq u$ .
  - $\bullet$   $\leq$  is reflexive and transitive, but not antisymmetric.
  - Factorize with  $\leq \cap \geq$ .
  - This amounts to deleting all non-maximal elements of a type in  $\mathcal{T}_2$ .

# **Normalization in** $\mathcal{T}_2$

- The types  $T \in \mathfrak{T}_2$  must be normalized, in order to take into account that keys may be used.
- This normalization moves upwards in the lattice.
- For example:  $\{h_{\{1,2\}}, 1_{\emptyset}\}$  can be simplified to  $\{h_{\{2\}}, 1_{\emptyset}\}$ .
  - i.e.  $h_{\{2\}}$  may be added to the original set.
- More interesting cases:
  - $\{1_{\{1\}}\}$  may be simplified to  $\{1_{\emptyset}\}$ .
  - $\{1_{\{2\}}, 2_{\{3\}}, \dots, (n-1)_{\{n\}}, n_{\{1\}}\}$  may be simplified to  $\{1_{\emptyset}, \dots, n_{\emptyset}\}.$
- These correspond to removal of encryption cycles.
- The security of encryption cycles does not follow from the security against chosen plaintext attacks.

# **Usage types**

- We have to record whether some data can be used as an encryption key.
- Types:
  - Key $_{\{i_1,...,i_n\}}$  a key created in one of the program points  $i_1,...,i_n$ ;
  - Data a non-key.
- $\gamma(x)$  a pair  $\langle T, K \rangle$  of information type and usage type.

• 
$$\langle T, K \rangle \leq \langle T', K' \rangle$$
 if  
•  $K = K' = \text{Data and } T \leq T';$   
•  $K = \text{Key}_N, K' = \text{Key}_{N'}, N \subseteq N' \text{ and } T \leq T';$   
•  $K = \text{Key}_{\{i_1, \dots, i_n\}}, K' = \text{Data and}$   
 $T \lor \{i_{1\emptyset}, \dots, i_{n\emptyset}\} \leq T'.$ 

#### **Inference rules**

#### Something like

$$\frac{\gamma(x) = \langle T, \mathsf{Data} \rangle \quad \gamma(x_i) \leq \langle T, \mathsf{Data} \rangle}{\gamma \vdash x := o(x_1, \dots, x_k) : T \ cmd}$$

i.e. type of the RHS must be smaller than the type of the LHS; the result is a program that does not assign to variables with types less than T.

- We will not present all the inference rules here.
- Instead, we show what constraints these rules impose upon  $\gamma$ .
  - This could probably be developed to a type inference algorithm.

## **General assignments**



- Here  $\rightarrow$  means  $\geq$ .
- The next slides will present special cases. These are alternatives to the general scheme.

# **Encryptions**



## **Key generations**



# Assigning one key to another



# **On proof of correctness**

- Given a program and a correct typing we construct another program that
  - produces public outputs that are indistinguishable from the original program;
  - does not access secret inputs.
- We construct it by transforming the original program.
- Two kinds of transformations:
  - those that don't change the semantics at all
     proven by showing a bisimulation
  - those that correspond to the indistinguishability of certain processes according to the security definition of the encryption system.

## Example

$$k := \mathfrak{G}en^{1}$$
if b then
$$k' := k$$

$$y := \mathfrak{G}en^{2}$$
else
$$k' := \mathfrak{G}en^{3}$$

$$y := \mathfrak{G}en^{4}$$

$$z := o(y)$$

$$x := \mathcal{E}nc(k', z)$$

$$u := \mathcal{E}nc(k, z)$$

## Example

 $k := \mathfrak{G}en^1$ if b then k' := k $y := \Im en^2$ else  $k' := \Im en^3$  $y := \Im en^4$ z := o(y) $x := \mathcal{E}nc(k', z)$  $u := \mathcal{E}nc(k, z)$ 

 $\begin{array}{l} b: \langle \{h_{\emptyset}\}, \mathsf{Data} \rangle \\ k: \langle \emptyset, \mathsf{Key}_{\{1\}} \rangle \\ k': \langle \{h_{\emptyset}\}, \mathsf{Key}_{\{1,3\}} \rangle \\ y: \langle \{h_{\emptyset}\}, \mathsf{Key}_{\{2,4\}} \rangle \\ z: \langle \{h_{\emptyset}, 2_{\emptyset}, 4_{\emptyset}\}, \mathsf{Data} \rangle \\ x: \langle \{h_{\{1\}}, h_{\{3\}}, 2_{\{1\}}, 2_{\{3\}}, 4_{\{1\}}, 4_{\{3\}}\}, \mathsf{Data} \rangle \\ u: \langle \{h_{\{1\}}, 2_{\{1\}}, 4_{\{1\}}\}, \mathsf{Data} \rangle \end{array}$ 

$$k := \mathfrak{G}en^{1}$$

$$x := \mathfrak{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$
while g do
$$x := \mathfrak{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$

$$k := \mathcal{G}en^{1}$$

$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$
while g do
$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$

 $s:\langle \{h_{\emptyset}\}, \mathsf{Data} \rangle$  $y:\langle \emptyset, \mathsf{Data} \rangle$  $k:\langle \emptyset, \mathsf{Key}_{\{1\}} \rangle$  $g:\langle \{h_{\emptyset}\}, \mathsf{Data} \rangle$  $x:\langle \{h_{\emptyset}\}, \mathsf{Data} \rangle$ 

$$k := \mathcal{G}en^{1}$$

$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$
while g do
$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$

 $s:\langle \{h_{\emptyset}\}, Data 
angle$  $y:\langle \emptyset, Data 
angle$  $k:\langle \emptyset, Key_{\{1\}} 
angle$  $g:\langle \{h_{\emptyset}\}, Data 
angle$  $x:\langle \{h_{\emptyset}\}, Data 
angle$ 

If the information carried by the loop guard (g) also went encrypted into ciphertexts (x), then...

# **Encryptions**



$$k := \mathcal{G}en^{1}$$

$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$
while g do
$$x := \mathcal{E}nc(k, y)$$

$$g := (\mathsf{lsb}_{10}(s) \neq \mathsf{lsb}_{10}(x))$$

 $s:\langle \{h_{\emptyset}\}, \mathsf{Data} \rangle$  $y:\langle \emptyset, \mathsf{Data} \rangle$  $k:\langle \emptyset, \mathsf{Key}_{\{1\}} \rangle$  $g:\langle \{h_{\emptyset}\}, \mathsf{Data} \rangle$  $x:\langle \{h_{\{1\}}\}, \mathsf{Data} \rangle$ 

If the information carried by the loop guard (g) also went encrypted into ciphertexts (x), then...

#### Conclusions

- A Type System for Computationally Secure Information Flow...
  - is easier to comprehend than data-flow analysis;
  - is easier to assist than data-flow analysis;
  - may allow separate analysis of modules.