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Haskell
I Haskell is a statically typed, pure functional language with

lazy evaluation.
I Functions are defined by pattern matching.

factorial 0 = 1
factorial n = n · factorial (n− 1)

I Every function has a type that usually can be inferred by
the compiler.

factorial :: Int → Int

I Functions with multiple arguments are written in curried
style.

and :: Bool → Bool → Bool
and True True = True
and = False
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User-defined datatypes

I New datatypes can be defined in Haskell using the data
construct:

data Nat = Zero | Succ Nat

The expression Succ (Succ (Succ Zero)) represents the
number 3.

I Functions are often defined recursively, by induction on
the structure of a datatype:

plus :: Nat → Nat → Nat
plus m Zero = m
plus m (Succ n) = Succ (plus m n)
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Haskell datatypes

Haskell’s data construct is extremely flexible.

data TimeInfo = AM | PM | H24
data Package = P String Author Version Date
data Maybe α = Nothing | Just α
data [α ] = [ ] | α : [α ]
data Tree α = Leaf α | Node (Tree α) (Tree α)

Common structure:
I parametrized over a number of arguments
I several constructors / alternatives
I multiple fields per constructor
I possibly recursion
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Parametric polymorphism

Haskell allows to express functions that work on all datatypes
in a uniform way.

id :: ∀α.α → α
id x = x

swap :: ∀α β.(α, β) → (β, α)
swap (x, y) = (y, x)

head :: ∀α.[α ] → α
head (x : xs) = x

We can take the head of a list of Packages, or swap a tuple of two
Trees.



When are two values equal?

It is easy to define an equality function for a specific datatype.

I Both values must belong to the same alternative.
I The corresponding fields must be equal.
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They must belong to the same alternative

data TimeInfo = AM | PM | H24
(= =)TimeInfo :: TimeInfo → TimeInfo → Bool
AM = =TimeInfo AM = True
PM = =TimeInfo PM = True
H24 = =TimeInfo H24 = True

= =TimeInfo = False



The corresponding fields must be equal

data Package = PD String Author Version Date

(= =)Package :: Package → Package → Bool

(PD n c v d) = =Package (PD n′ c′ v′ d′) = n = =String n′

∧ c = =Author c′

∧ v = =Version v′

∧ d = =Date d′



Equality for parametrized datatypes

data Maybe α = Nothing | Just α

(= =)Maybe :: ∀α.(α → α → Bool) → (Maybe α → Maybe α → Bool)
(= =)Maybe (= =)α Nothing Nothing = True
(= =)Maybe (= =)α (Just x) (Just x′) = x = =??? x′

(= =)Maybe (= =)α = False

I We can define the equality for parametrized datatypes, but
for that, we must know the equality function(s) for the
argument(s).

I The equality function depends on itself.
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Equality isn’t parametrically polymorphic

I We know intuitively what it means for two Packages to be
equal.

I We also know what it means for two Trees, Maybes or
TimeInfos to be equal.

I However, it is impossible to give a parametrically
polymorphic definition for equality:

(= =) :: ∀α.α → α → Bool
x = = y = ???

I This is a consequence of the Parametricity Theorem
(Reynolds 1983).
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Overloading or ad-hoc polymorphism

I We have seen that we can define specific equality functions
for many datatypes, following the intuitive algorithm that
two values are equal iff

• both values belong to the same alternative,
• the corresponding fields are equal.

I A parametrically polymorphic equality function is
impossible, because equality needs to access the structure
of the datatypes to perform the comparison.

I Haskell allows to place functions that work on different
types into a type class.

I Then, we can use the same name (= =) for all the specific
equality functions.
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Type classes

A type class defines a set of datatypes that support common
operations:

class Eq α where (= =) :: α → α → Bool

A type can be made an instance of the class by defining the
class operations:

instance Eq TimeInfo where (= =) = (= =)TimeInfo

instance Eq Package where (= =) = (= =)Package

instance Eq α ⇒ Eq [α ] where (= =) = (= =)[ ] (= =)

The dependency of equality turns into an instance constraint.
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Is this satisfactory?

I We can use an overloaded version of equality on several
datatypes now.

I We had to define all the instances ourselves, in an ad-hoc
way.

I Once we want to use equality on more datatypes, we have
to define new instances.

Let us define the equality function once and for all!
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Structural polymorphism

Structural polymorphism (also called generic programming)
makes the structure of datatypes available for the definition

of type-indexed functions!
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Parametric polymorphism
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Generic equality

(= =) 〈α〉 :: α → α → Bool
(= =) 〈Unit〉 Unit Unit = True
(= =) 〈Sum α β〉 (Inl x) (Inl x′) = (= =) 〈α〉 x x′

(= =) 〈Sum α β〉 (Inr y) (Inr y′) = (= =) 〈β〉 y y′

(= =) 〈Sum α β〉 = False
(= =) 〈Prod α β〉 (x× y) (x′ × y′) = (= =) 〈α〉 x x′ ∧ (= =) 〈β〉 y y′

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β
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Generic functions

A function that is defined for the Unit, Sum, and Prod types is
“generic” or structurally polymorphic.

I It works automatically for “all” datatypes.
I Datatypes are implicitly deconstructed into a

representation that involves Unit, Sum, and Prod.
I Primitive or abstract types might require special cases in

the definition.
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Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.



Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.



Primitive types

I A primitive type is a datatype that can not be
deconstructed because its implementation is hidden or
because it cannot be defined by means of the Haskell data
construct (such as Int, Char, (→), and IO).

I If a generic function is supposed to work for types
containing a primitive type, it has to be defined for this
primitive type.

(= =) 〈Int〉 x x′ = (= =)Int x x′

(= =) 〈Char〉 x x′ = (= =)Char x x′

I Abstract types, where the programmer specifically hides
the implementation, are treated in the same way as
primitive types.



Deconstruction into Unit, Sum, Prod

I A value of Unit type represents a constructor with no fields
(such as Nothing or the empty list).

I A Sum represents the choice between two alternatives.
I A Prod represents the sequence of two fields.

data Unit = Unit
data Sum α β = Inl α | Inr β
data Prod α β = α × β

data Tree α = Leaf α | Node (Tree α) (Tree α)
Tree α ≈ Sum α (Prod (Tree α) (Tree α))
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Using a generic function

The defined equality function can now be used at different
datatypes.

data TimeInfo = AM | PM | H24
data Tree α = Leaf α | Node (Tree α) (Tree α)

(= =) 〈TimeInfo〉 AM H24  False
(= =) 〈TimeInfo〉 PM PM  True
(= =) 〈Tree Int〉 (Node (Node (Leaf 2) (Leaf 4))

(Node (Leaf 1) (Leaf 3)))
(Node (Node (Leaf 4) (Leaf 2))

(Node (Leaf 1) (Leaf 3)))
 False



Applications for generic functions

I comparison
• equality
• ordering

I parsing and printing
• read/write a canonical representation
• read/write a binary representation
• read/write XML to/from a typed Haskell value
• compression, encryption

I generation
• generating default values
• enumerating all values of a datatype
• (random) generation of test data

I traversals
• collecting and combining data from a tree
• modifying data in a tree
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I reusable
I type safe
I simple
I adaptable
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The Generic Haskell Project

I A research project funded by the NWO (Dutch Research
Organisation) from October 2000 until October 2004.

I Goal: create a language extension for Haskell that supports
generic programming.

I Based on earlier work by Johan Jeuring and Ralf Hinze.
I Project is now finished, but work on Generic Haskell will

continue in Utrecht.
I Results: compared to the original ideas, much easier to

use, yet more expressive.
I The PhD thesis “Exploring Generic Haskell” is a

reasonably complete documentation of the results of the
project.
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The Generic Haskell Compiler

I . . . is a preprocessor for the Haskell language.
I It extends Haskell with constructs to define

• type-indexed functions (which can be generic),
• type-indexed datatypes.

I Generic Haskell compiles datatypes of the input language
to isomorphic structural representations using Unit, Sum,
and Prod.

I Generic Haskell compiles generic functions to specialized
functions that work for specific types.

I Generic Haskell compiles calls to generic functions into
calls to the specialisations.



Additional features

I Several mechanisms to define new generic definitions out
of existing ones:

• local redefinition allows to change the behaviour of a
generic function on a specific type locally

• generic abstraction allows to define generic functions in
terms of other generic functions without fixing the type
argument

• default cases allow to extend generic functions with
additional cases for specific types
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Dependencies

I Generic functions can interact, i.e., depend on one another.
I For instance, equality depends on itself.
I There are generic functions that depend on multiple other

generic functions.
I Dependencies are tracked by the type system in Generic

Haskell.



Type-indexed datatypes

I Generic functions are functions defined on the structure of
datatypes.

I Type-indexed datatypes are datatypes defined on the
structure of datatypes.

I Type-indexed tries are finite maps that employ the shape
of the key datatype to store the values more efficiently.

I The zipper is a data structure that facilitates editing
operations on a datatype.
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Implementation of Generic Haskell

I Generic Haskell can be obtained from
www.generic-haskell.org.

I The current release (from January 2005) should contain all
the features mentioned in this talk (except for syntactical
differences when using type-indexed types).



Related work

I Scrap your boilerplate (Lämmel and Peyton Jones)
I Pattern calculus (Jay)
I Dependently typed programming (Augustsson, Altenkirch

and McBride, . . . )
I Intensional type analysis (Harper, Morrisett, Weirich)
I GADTs (Cheney and Hinze, Weirich and Peyton Jones)
I Template Haskell (Sheard and Peyton Jones)
I Templates in C++
I Generics in C# and Java
I . . .



Future work

I Generic views, i.e., different structural representations of
datatypes for different sorts of applications.

I Type inference.
I First-class generic functions.
I . . .









Parsing and printing

Many forms of parsing and printing functions can be written
generically. A very simple example is a function to encode a
value as a list of Bits:

data Bit = O | I
encode 〈α〉 :: α → [Bit ]
encode 〈Unit〉 Unit = [ ]
encode 〈Sum α β〉 (Inl x) = O : encode 〈α〉 x
encode 〈Sum α β〉 (Inr y) = I : encode 〈β〉 y
encode 〈Prod α β〉 (x× y) = encode 〈α〉 x ++ encode 〈β〉 y
encode 〈Int〉 x = encodeInBits 32 x
encode 〈Char〉 x = encodeInBits 8 (ord x)



Parsing and printing – contd.

data Tree α = Leaf α | Node (Tree α) (Tree α)
data TimeInfo = AM | PM | H24

encode 〈TimeInfo〉 H24
 [I, I ]

encode 〈Tree TimeInfo〉 (Node (Leaf AM) (Leaf PM))
 [I, O, O, O, I, O ]





Traversals

collect 〈α〉 :: ∀ρ.α → [ρ ]
collect 〈Unit〉 Unit = [ ]
collect 〈Sum α β〉 (Inl x) = collect 〈α〉 x
collect 〈Sum α β〉 (Inr y) = collect 〈β〉 y
collect 〈Prod α β〉 (x× y) = collect 〈α〉 x ++ collect 〈β〉 y
collect 〈Int〉 x = [ ]
collect 〈Char〉 x = [ ]

Alone, this generic function is completely useless! It always
returns the empty list.
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Local redefinition and collect

The function collect is a good basis for local redefinition.

Collect all elements from a tree:

let collect 〈τ〉 x = [x ]
in collect 〈Tree τ〉 (Node (Leaf 1) (Leaf 2)

(Leaf 3) (Leaf 4)) [1, 2, 3, 4 ]





Local redefinition

let (= =) 〈α〉 x y = (= =) 〈Char〉 (toUpper x) (toUpper y)
in (= =) 〈[α ]〉 "generic Haskell" "Generic HASKELL"





Generic abstraction

symmetric 〈α〉 x = equal 〈α〉 x (reverse 〈α〉 x)





Type-indexed tries

type FMap 〈Unit〉 val = Maybe val
type FMap 〈Sum α β〉 val = (FMap 〈α〉 val, FMap 〈β〉 val)
type FMap 〈Prod α β〉 val = FMap 〈α〉 (FMap 〈β〉 val)
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