
'

&

$

%

Program proofs and compilation

Ando Saabas

Institute of Cybernetics, Tallinn

Joint work with Tarmo Uustalu, Tamara Rezk

Theory Days, Koke 2005

'

&

$

%

Outline

• Background and motivation

• Different optimizations and their effect on program proofs

• Extensions to optmization algorithms

• Conclusion and further work

'

&

$

%

Recap

• In case of mobile devices, post-issuance downloading of code is
possible.

• Bytecode verification can guarantee the type and memory safety
of the program.

• Besides obvious security guarantees, some guarantees about
functional properties of the code might be needed.

• Typically, developers can use interactive verification tools to get
some guarantees about functional and behavioral properties of a
(source) program.

• How to bring these benefits to the code user?

'

&

$

%

Proof Carrying Code

• Proving programs is hard, but checking proofs is easy, so ship the
proof with the code and have the user check it

• ...but who would want to prove functional properties of compiled
code?

'

&

$

%

Two directions

• Automatic generation of certificates, based on properties of the
high level code (Necula, Morrisett)

• Generation of certificates based on high level proofs.

'

&

$

%

Compiling proofs

The code developer would ...

• Write a program A, annotate it with (Hoare style) specifications
S, and build a proof P that A abides to S using some verification
environment.

• Compile the program, its specification and the proof, obtaining a
compiled program A , a (compiled) specification S , and a
(compiled) proof P .

'

&

$

%

The code consumer...

• Generates the set of proof obligations from A and S using a
weakest precondition calculus.

• Uses a simple and fast proof checker to check if the proof P is
valid.

How to compile proofs?

'

&

$

%

For a non-optimizing compiler...

Theorem. For all while programs c and assertions P , the weakest
precondition of c is syntactically equal to the weakest precondition of
its compiled counterpart C(c):
wpw(c, P) = wpa(C(c), P)

The compilation of proofs and specifications could be identity?

'

&

$

%

For a non-optimizing compiler...

Theorem. For all while programs c and assertions P , the weakest
precondition of c is syntactically equal to the weakest precondition of
its compiled counterpart C(c):
wpw(c, P) = wpa(C(c), P)

The compilation of proofs and specifications could be identity?
No, because of compiler optimizations.

'

&

$

%

Three types of optimizations

1. Optimizations that do not break the equivalence between
proof-obligations (eg optimizations reducing the number of load and
store instructions)

load a load a

load a ⇒ dup

plus plus

'

&

$

%

2. Optimizations which break the syntactic equivalence (eg dead code
elimination)

if (true) then c1 else c2 ⇒ c1

true⇒ wp(c1, φ) ∧ false⇒ wp(c2, φ) wp(c1, φ)

'

&

$

%

3. Optimizations which break loop annotations

while i < n { c = 4 * n + a

j = 4 * i k = a

k = a + j ⇒ while k < c {
s = s + A[k] s = s + A[k]

i = i + 1 k = k + 4

} }

'

&

$

%

The third category

Optimizations based on dataflow analysis such as reaching definitions
and available expressions analysis

• Common sub-expression elimination

• Constant folding

• Useless code elimination

Loop optimizations

• Strength reduction and induction variable change

• Code motion

How are the assertions to be changed?

'

&

$

%

The intermediate language

e ::= x | n | e1 ⊕ e2 | M [e]

c ::= goto L | x := e | M [e1] := e2 | c1; c2 |
if e then L1 else L2 | assert ϕ

'

&

$

%

Common sub-expression elimination

General idea: if an expression is calculated more than once, save it in
a temporary variable to later reuse this result.
Algorithm. If there is a statement s : t = x⊕ y where x⊕ y is
available, then compute reaching expressions, ie find statements of
the form n : v = x⊕ y, such that the path from n to s does not
compute x⊕ y or define x or y. Choose a new temporary variable w ,
and rewrite n as

n : w = x⊕ y

n′ : v = w

Finally, modify statement s to be

s : t = w

'

&

$

%

Example

t’ = a + b;

t = a + b; t = t’;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
[s = i * (a+b)] [s = i * (a + b)]

s = s + (a+b); s = s + t’;

i = i + 1; i = i + 1;

} }

'

&

$

%

Example

t’ = a + b;

t = a + b; t = t’;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
[s = i * (a+b)] [s = i * t’]

s = s + (a+b); s = s + t’;

i = i + 1; i = i + 1;

} }

'

&

$

%

Example

t’ = a + b;

t = a + b; t = t’;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
[s = i * (a+b)] [s = i * t’]

s = s + (a+b); s = s + t’;

i = i + 1; i = i + 1;

} }

Post ≡ s = n ∗ (a + b)

'

&

$

%

Example

t’ = a + b;

t = a + b; t = t’;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
[s = i * (a+b)] [s = i * (a+b)]

s = s + (a+b); s = s + t’;

i = i + 1; i = i + 1;

} }

Post ≡ s = n ∗ (a + b)

'

&

$

%

Extension to CSE optimization algorithm

1. For each assert instruction, compute definitions that reach it

2. Compute reaching assertions, ie for each program point a set of
asserts that may appear before it in the control flow

3. For to-be-optimized program points (n, s), find the set A of all
asserts which n reaches

4. For all asserts ϕ in A which reach s, change the assert to
(ϕ ∧ w = x⊕ y), where w is the fresh variable and x⊕ y is the
common sub-expression.

'

&

$

%

Example

t’ = a + b;

t = a + b; t = t’;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
[s = i * (a+b)] [s = i * (a+b) & t’ = a + b]

s = s + (a+b); s = s + t’;

i = i + 1; i = i + 1;

} }

Post ≡ s = n ∗ (a + b)

'

&

$

%

Constant propagation

• General idea: if the value of a variable is always constant, replace
the variable with the constant.

• Based on reaching definitions analysis.

• Similar to CSE, the same algorithm applies.

'

&

$

%

Example

c = 5;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
s = s + (i + c); s = s + (i + 5);

i = i + 1; i = i + 1;

} }

'

&

$

%

Useless code elimination

• General idea: assignments to variables which are not used later
in the program can be removed.

• Based on liveness analysis (backward dataflow analysis)

• Does not pose a problem when asserts are considered as part of
the language ie use variables

'

&

$

%

Strength reduction

• General idea: replace multiplication with addition inside loops

• Based on induction variable detection

Algorithm: in a loop L, a variable i is an induction variable if it only
changes by a given constant in each iteration of the loop (i = i± c).
A variable j is a derived induction variable, if the only definition of j

in L is of the form j = a + i ∗ b. Strength reduction can be performed
by introducing a new variable j′, such that j′ = j′ + c ∗ b and j = j′,
and j′ is initialized to a + i ∗ b

'

&

$

%

i = 0;

i = 0; j’ = 0;

s = 0; s = 0;

while i < n { while i < n {
j = 4 * i; j = j’;

s = s + M[j]; s = s + M[j];

i = i + 1; ⇒ i = i + 1;

} j’ = j’ + 4;

}

I ≡ i ≤ n ∧ s =
∑i−1

x=0 M [x ∗ 4]
Post ≡ s =

∑n−1
x=0 M [x ∗ 4]

'

&

$

%

Algorithm extension: find the set A of asserts in the loop. For each
assert ϕ in A and derived induction variable definition j = a + i ∗ b,
change the assert to (ϕ ∧ j′ = a + i ∗ b).

'

&

$

%

i = 0;

i = 0; j’ = 0;

s = 0; s = 0;

while i < n { while i < n {
j = 4 * i; j = j’;

s = s + M[j]; s = s + M[j];

i = i + 1; ⇒ i = i + 1;

} j’ = j’ + 4;

}

I ≡ i ≤ n ∧ s =
∑i−1

x=0 M [x ∗ 4] ∧ j′ = 4 ∗ i

'

&

$

%

Induction variable change

i = 0; i = 0;

j’ = 0; j’ = 0;

s = 0; s = 0;

while i < n { while j’ < n * 4 {
s = s + M[j’]; ⇒ s = s + M[j’];

i = i + 1; j’ = j’ + 4;

j’ = j’ + 4; }
}

Already taken care of in the strength reduction step (the relationship
between induction variables is made explicit in the assertion).

'

&

$

%

Code motion

• General idea: lift computation out of the loop body when
possible.

• Based on loop-invariant computation, ie finding statements
t = a⊕ b in a loop where the values of a and b are the same in
each iteration of the loop.

• Similar to common sub-expression elimination

'

&

$

%

t = a + b;

i = 0; i = 0;

s = 0; s = 0;

while i < n { ⇒ while i < n {
t = a + b; s = s + M[i + t];

s = s + M[i + t]; i = i + 1;

i = i + 1; }
}

Post ≡ s =
n−1∑
x=0

M [x + (a + b)]

'

&

$

%

Algorithm extension: find the set A of asserts in the loop. For each
assert ϕ in A and invariant definition t = a⊕ b, change the assert

to (ϕ ∧ t = a⊕ b).

'

&

$

%

Conclusion and further work.

• Assertion transformation not too complicated, so proof
transformation seems feasible

• Improving the algorithms

• Implementation

