
The essence of dataflow programming

Tarmo U
Varmo V

Teooriapäevad Kokel2, 4.-6.2.2005

T

Motivation

• Following Moggi and Wadler, it is standard in programming and
semantics to analyze various notions of computation with an effect as
monads.

• But there is a need for both finer and more permissive mathematical
abstractions to uniformly describe the numerous function-like
concepts encountered in programming.

• Some proposals: Lawvere theories (Power, Plotkin), Freyd categories
(Power, Robinson).

T U, V V 2

T

• In functional programming, Hughes invented Freyd categories
independently of Power, Robinson under the name of arrow types and
has been promoting them an abstraction especially handy in
programming with signals/flows.

• This has been picked up; there is by now both a library and specialized
syntax for arrows in Haskell, as well as an arrows-based library for
functional reactive programming.

• But what about comonads? They have not found extensive use (some
examples by Brookes and Geva, Kieburtz, but mostly artificial).

T U, V V 3

T

This talk

• Thesis: Used properly, comonads are exactly the right tool for
programming signal/flow functions, accounting both for general signal
functions and for causal ones (where the output at a given time can
only depend on the input until that time).

• This extends Moggi’s modular approach to language semantics to
languages for implicit context based paradigms such as intensional
programming in Lucid or synchronous dataflow programming in
Lustre/Lucid Synchrone: context relying functions are interpreted as
pure functions via a comonad translation.

For such languages, Moggi-style accounts have not been available thus
far.

T U, V V 4

T

Outline

• Monads, monads in programming and semantics

• Freyd categories/arrow types and programming with stream functions

• Comonads for programming with stream functions, semantics

• A distributive law for programming with partial-stream functions,
semantics

T U, V V 5

T

Monads

• A monad (in the Kleisli format) on a category C is given by a mapping
T : |C| → |C| together with a |C|-indexed family η of maps ηA : A → TA
(unit), and an operation −? taking every map k : A → TB in C to a map
k? : TA → TB (extension operation) such that

– for any k : A → TB, k? ◦ ηA = k,

– ηA
? = idTA,

– for any k : A → TB, ` : B → TC, (`? ◦ k)? = `? ◦ k?.

• Any monad (T, η,−
?) defines a category CT where |CT | = |C| and

CT(A, B) = C(A, TB), (idT)A = ηA, ` ◦T k = `? ◦ k (Kleisli category) and
an identity-on-objects functor J : C → CT where J f = ηB ◦ f for
f : A → B.

T U, V V 6

T

• In programming and semantics, monads are used to model notions of
computation with an effect; TA is the type of computations of values of
A.

An function with an effect from A to B is a map A → B in the Kleisli
category, i.e., a map A → TB in the base category.

• Some examples applied in semantics:

– TA = MaybeA = A + 1, error (partiality), TA = A + E, exceptions,

– TA = E ⇒ A, environment,

– TA = ListA = µX.1 + A × X, non-determinism,

– TA = S ⇒ A × S, state,

– TA = (A ⇒ R) ⇒ R, continuations,

– TA = µX.A + (U ⇒ X), interactive input,

– TA = µX.A + V × X ¾ A × ListV, interactive output,

– TA = µX.A + FX, the free monad over F,

– TA = νX.A + FX, the free completely iterative monad over F.

T U, V V 7

T

Monads in Haskell

• The monad class is defined in the Prelude:

class Monad t where

return :: a -> t a

(>>=) :: t a -> (a -> t b) -> t b

• The error monad:
instance Monad Maybe where

return a = Just a

Just a >>= k = k a

Nothing >>= k = Nothing

errorM :: Maybe a

errorM = Nothing

handleM :: Maybe a -> Maybe a -> Maybe a

Nothing ‘handleM‘ d = d

Just a ‘handleM‘ _ = Just a

T U, V V 8

T

• The non-determinism monad:
instance Monad [] where

return a = [a]

[] >>= f = []

(a : as) >>= f = f a ++ (as >>= f)

deadlockL :: [a]

deadlockL = []

choiceL :: [a] -> [a] -> [a]

as0 ‘choiceL‘ as1 = as0 ++ as1

T U, V V 9

T

Monadic semantics

• Syntax:
type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm

| N Int | Tm :+ Tm | ...

| Tm :== Tm | ...

| TT | FF | Not Tm | ... | If Tm Tm Tm

-- specific for Maybe

| Error | Tm ‘Handle‘ Tm

-- specific for []

| Deadlock | Tm ‘Choice‘ Tm

• Semantic categories:
data Val t = I Int | B Bool | F (Val t -> t (Val t))

type Env t = [(Var, Val t)]

env0 :: Env t

env0 = []

T U, V V 10

T

• Evaluation:
class Monad t => MonadEv t where

ev :: Tm -> Env t -> t (Val t)

_ev :: MonadEv t => Tm -> Env t -> t (Val t)

_ev (V x) env = return (unsafelookup x env)

_ev (L x e) env = return (F (\ a -> ev e ((x, a) : env)))

_ev (e :@ e’) env = ev e env >>= \ (F f) ->

ev e’ env >>= \ a ->

f a

_ev (N n) env = return (I n)

_ev (e0 :+ e1) env = ev e0 env >>= \ (I n0) ->

ev e1 env >>= \ (I n1) ->

return (I (n0 + n1))

...

_ev TT env = return (B True)

_ev FF env = return (B False)

_ev (Not e) env = ev e env >>= \ (B b) ->

return (B (not b))

...

_ev (If e e0 e1) env = ev e env >>= \ (B b) ->

if b then ev e0 env else ev e1 env

T U, V V 11

T

• Evaluation cont’d:
instance MonadEv Maybe where

ev Error env = errorM

ev (e0 ‘Handle‘ e1) env = ev e0 env ‘handleM‘ ev e1 env

ev e env = _ev e env

testM :: Tm -> Maybe (Val Maybe)

testM = ev e env0

instance MonadEv [] where

ev Deadlock env = deadlockL

ev (e0 ‘Choice‘ e1) env = ev e0 env ‘choiceL‘ ev e1 env

ev e env = _ev e env

testL :: Tm -> [Val []]

testL = ev e env0

T U, V V 12

T

Freyd categories / arrow types

• Freyd categories are a generalization of Kleisli categories of strong
monads.

• A symmetric premonoidal category is the same as a symmetric
monoidal category except that the tensor is not required not be
bifunctorial, only functorial in each of its two arguments separately. A
map f : A → B of such a category is called central if the two
composites A ⊗ C → B ⊗ D agree and the two composites
C ⊗ A → D ⊗ B agree for every map g : C → D.

A Freyd category over a Cartesian category C is a symmetric
premonoidal category K together with an identity-on-objects functor
J : C → K that preserves the symmetric premonoidal structure of C on
the nose and also preserves centrality.

T U, V V 13

T

• Freyd categories a.k.a. arrow types in Haskell (as in Control.Arrow):

class Arrow r where

pure :: (a -> b) -> r a b

(>>>) :: r a b -> r b c -> r a c

first :: r a b -> r (a, c) (b, c)

• Kleisli arrows as arrows:

newtype Kleisli t a b = Kleisli (a -> t b)

instance Monad t => Arrow (Kleisli t) where

pure f = Kleisli (return . f)

Kleisli k >>> Kleisli l = Kleisli ((>>= l) . k)

first (Kleisli k) = Kleisli (\ (a, c) ->

k a >>= \ b -> return (b, c))

T U, V V 14

T

• The general stream functions arrow type (to model transformers of
signals in discrete time):

data Stream a = a :< Stream a -- coinductive

zipS :: Stream a -> Stream b -> Stream (a, b)

zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

newtype SF a b = SF (Stream a -> Stream b)

instance Arrow SF where

pure f = SF (mapS f)

SF k >>> SF l = SF (l . k)

first SF k = SF (uncurry zipS . (\ (as, ds) -> k as, ds) . unzipS)

• Delay:

fbySF :: a -> SF a a

fbySF a0 = SF (\ as -> a0 :< as)

T U, V V 15

T

Comonads

• Comonads are the formal dual of monads.

• A comonad on a category C is given by a mapping D : |C| → |C|

together with a |C|-indexed family ε of maps εA : DA → A (counit),
and an operation −† taking every map k : DA → B in C to a map
k† : DA → DB (coextension operation) such that

– for any k : DA → B, εB ◦ k† = k,

– εA
† = idDA,

– for any k : DA → B, ` : DB → C, (` ◦ k†)† = `† ◦ k†.

• Any comonad (D, ε,−
†) defines a category (CD where |CD| = |C| and

CD(A, B) = C(DA, B), (idD)A = εA, ` ◦D k = ` ◦ k† (coKleisli category)
and an identity-on-objects functor J : C → CD where J f = f ◦ εA for
f : A → B.

T U, V V 16

T

• Comonads should be usable to model notions of value in a context; DA
would be the type of contextually situated values of A.

A context-relying function from A to B would be a map A → B in the
coKleisli category, i.e., a map DA → B in the base category.

• Some examples:

– DA = A × E, the product comonad,

– DA = StrA = νX.A × X, the streams comonad,

– DA = νX.A × FX, the cofree comonad over F,

– DA = µX.A × FA, the cofree recursive comonad over F.

T U, V V 17

T

Comonads in Haskell

• The basic implementation:

class Comonad d where

counit :: d a -> a

cobind :: (d a -> b) -> d a -> d b

• The product comonad:
data With e a = a :- e

instance Comonad (With e) where

counit (a :- _) = a

cobind k d@(_ :- e) = k d :- e

• The streams comonad:
data Stream a = a :< Stream a -- coinductive

instance Comonad Stream where

counit (a :< _) = a

cobind k d@(_ :< as) = k d :< cobind k as

T U, V V 18

T

Comonads for general and causal stream functions

• Streams (signals in discrete time) are naturally isomorphic to functions
from natural numbers: StrA ¾ Nat ⇒ A.

• General stream functions StrA → StrB are thus in natural bijection
with maps StrA ×Nat → B.

• Hence the values of A in context for general stream functions are
StrPosA = StrA ×Nat ¾ LVSA = ListA × A ×StrA.

A time point partitions a stream into its past (a list), present (a value)
and future (a stream).

• The values of A in context for causal stream functions are
LVA = ListA × A ¾ µX.A ×MaybeX.

This is the cofree recursive comonad over the Maybe functor.

T U, V V 19

T

• Streams and isomorphism of streams to functions from naturals:

data Stream a = a :< Stream a -- coinductive

str2fun :: Stream a -> Int -> a

fun2str :: (Int -> a) -> Stream a

• Streams with a marked position: values in a context for general stream
functions:

data StrPos a = SP (Stream a) Int

instance Comonad StrPos where

counit (SP as i) = str2fun as i

cobind k (SP as i) = SP (fun2str (\ i’ -> k (SP as i’))) i

runSP :: (StrPos a -> b) -> Stream a -> Stream b

runSP k as = runSP’ k as 0

runSP’ k as i = k (SP as i) :< runSP’ k as (i + 1)

T U, V V 20

T

• Delay (“followed by”) operation:

fbySP :: a -> StrPos a -> a

fbySP a (SP as 0) = a

fbySP _ (SP as (i + 1)) = str2fun as i

• Summation:

sumSP :: Num a => StrPos a -> a

sumSP (SP as 0) = str2fun as 0

sumSP (SP as (i + 1)) = str2fun as (i + 1) + sumSP (SP as i)

• Compression (non-causal!):

compress :: StrPos a -> (a, a)

compress (SP as i) = (str2fun as (2 * i), str2fun as (2 * i + 1))

T U, V V 21

T

• List-value pairs, values in a context for causal stream functions:

data List a = Nil | List a :> a -- inductive

data LV a = List a := a

instance Comonad LV where

counit (_ := a) = a

cobind k d@(az := _) = cobindP k az := k d where

cobindP k Nil = Nil

cobindP k (az :> a) = cobindP k az :> k (az := a)

runLV :: (LV a -> b) -> Stream a -> Stream b

runLV k (a :< as) = runLV’ k Nil a as

runLV’ k az a (a’ :< as’)

= k (az := a) :< runLV’ k (az :> a) a’ as’

T U, V V 22

T

• A feedback resolution combinator:

feedback :: (List (a, b) -> a -> b) -> (LV a -> b)

feedback k d = k abz a

where (abz := (a, _))

= cobind (pair counit (feedback k)) d

• Feedbacks can be run directly:

runbase :: (List (a, b) -> a -> b) -> Stream a -> Stream b

runbase k (a :< as) = runbase’ k Nil a as

runbase’ k abz a (a’ :< as’)

= b :< runbase’ k (abz :> (a, b)) a’ as’

where b = k abz a

T U, V V 23

T

• Feedbacks can also be composed directly:

compbase :: (List (a, b) -> a -> b)

-> (List ((a, b), c) -> (a, b) -> c)

-> List (a, (b, c)) -> a -> (b, c)

compbase k l e a

= let

e’ = fmap (\ (a, (b, c)) -> (a, b)) e

e’’ = fmap (\ (a, (b, c)) -> ((a, b), c)) e

b = k e’ a

c = l e’’ (a, b)

in (b, c)

T U, V V 24

T

• Delay:

fbyLV :: a -> LV a -> a

fbyLV a0 (Nil := _) = a0

fbyLV _ ((_ :> a’) := _) = a’

• Summation directly and with feedback:

sumLV :: Num a => LV a -> a

sumLV (Nil := a) = a

sumLV ((az’ :> a’) := a) = sumLV (az’ := a’) + a

sumbase : Num a => List (a, a) -> a -> a

sumbase Nil a = a

sumbase (_ :> (_, b)) a = b + a

T U, V V 25

T

Comonadic semantics of a dataflow language

• Comonads with zipping:

class Comonad d => ComonadZip d where

czip :: d a -> d b -> d (a, b)

instance ComonadZip LV where

czip (az := a) (bz := b) = czipP az bz := (a, b)

where czipP Nil Nil = Nil

czipP (az :> a) (bz :> b) = czipP az bz :> (a, b)

T U, V V 26

T

• Syntax:
type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm

| N Int | Tm :+ Tm | ...

| Tm :== Tm | ...

| TT | FF | Not Tm | ... | If Tm Tm Tm

-- specific for LV

| Fby Tm Tm

• Semantic domains:
data Val d = I Int | B Bool | F (d (Val d) -> Val d)

type Env d = d [(Var, Val d)]

env0 :: Int -> Env LV

env0 n = env0P n := []

where env0P 0 = Nil

env0P (n + 1) = env0P n :> []

T U, V V 27

T

• Evaluation:
class ComonadZip d => ComonadEv d where

ev :: Tm -> Env d -> Val d

_ev :: ComonadEv d => Tm -> Env d -> Val d

_ev (V x) env = unsafelookup x (counit env)

_ev (L x e) env = F (\ d -> ev e (cobind (repair . counit) (czip d env)))

where repair (a, g) = (x, a) : g

_ev (e :@ e’) env = case ev e env of

F f -> f (cobind (ev e’) env)

_ev (N n) env = I n

_ev (e0 :+ e1) env = case ev e0 env of

I n0 -> case ev e1 env of

I n1 -> I (n1 + n2)

...

_ev TT env = B True

_ev FF env = B False

_ev (Not e) env = case ev e env of

B b -> B (not b)

...

_ev (If e e0 e1) env = case ev e env of

B b -> if b then ev e0 env else ev e1 env

T U, V V 28

T

• Evaluation cont’d:
instance ComonadEv LV where

ev (e0 ‘Fby‘ e1) env = ev e0 env ‘fbyLV‘ cobind (ev e1) env

ev e env = _ev e env

testLV :: Tm -> Int -> LV (Val LV)

testLV e n = cobind (ev e) (env0 n)

• Examples:
pos = Rec (L "pos" (N 0 ‘Fby‘ (V "pos" :+ N 1)))

sums = L "x" (Rec (L "sumx" (V "x" :+ (N 0 ‘Fby‘ V "sumx"))))

diff = L "x" (V "x" :- (N 0 ‘Fby‘ V "x"))

fact = Rec (L "fact" (N 1 ‘Fby‘ (V "fact" :* (pos :+ N 1))))

fibo = Rec (L "fibo" (N 0 ‘Fby‘ (V "fibo" :+ (N 1 ‘Fby‘ V "fibo"))))

T U, V V 29

T

Distributive laws

• Given a comonad (D, ε,−
†) and a monad (T, η,−?) on a category C, a

distributive law of D over T is a natural transformation λ with
components DTA → TDA subject to four coherence conditions.

A distributive law of D over T defines a category CD,T where
|CD,T | = |C|, CD,T(A, B) = C(DA, TB), (idD,T)A = ηA ◦ εA,
` ◦D,T k = l? ◦ λB ◦ k† for k : DA → TB, ` : DB → TC (call it the biKleisli
category), with inclusions to it from both the coKleisli category of D
and Kleisli category of T.

T U, V V 30

T

A distributive law for causal partial-stream functions

• The type of partial streams (clocked signals in discrete time) over a
type A is Str(MaybeA).

• (Strict) causal partial-stream functions are representable as biKleisli
arrows of a distributive law of LV over Maybe.

• Distributive laws in Haskell:

class (Comonad d, Monad t) => Dist d t where

dist :: d (t a) -> t (d a)

• A distributive law between LV and Maybe:

instance Dist LV Maybe where

dist (az := Nothing) = Nothing

dist (az := Just a) = Just (filterJ az := a)

where filterJ Nil = Nil

filterJ (az :> Nothing) = filterJ az

filterJ (az :> Just a) = filterJ az :> a

T U, V V 31

T

• Interpreting a biKleisli arrow as a partial-stream function:

runLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)

runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

runLVM’ k az Nothing (a’ :< as’)

= Nothing :< runLVM’ k az a’ as’

runLVM’ k az (Just a) (a’ :< as’)

= k (az := a) :< runLVM’ k (az :> a) a’ as’

• The ‘when’ operation from dataflow languages:

whenLVM :: LV (a, Bool) -> Maybe a

whenLVM (_ := (a, False)) = Nothing

whenLVM (_ := (a, True)) = Just a

T U, V V 32

T

Distributive law semantics of a clocked dataflow language

• Syntax:
type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm

| N Int | Tm :+ Tm | ...

| Tm :== Tm | ...

| TT | FF | Not Tm | ... | If Tm Tm Tm

-- specific for LV

| Fby Tm Tm

-- specific for Maybe

| Nosig | Merge Tm Tm

• Semantic domains:
data Val d t = I Int | B Bool | F (d (Val d t) -> t (Val d t))

type Env d t = d [(Var, Val d t)]

env0 :: Int -> Env LV Maybe

env0 n = env0P n := []

where env0P 0 = Nil

env0P (n + 1) = env0P n :> []

T U, V V 33

T

• Evaluation:
class Dist d t => DistEv d t where

ev :: Tm -> Env d t -> t (Val d t)

_ev :: DistEv d t => Tm -> Env d t -> t (Val d t)

_ev (V x) env = return (unsafelookup x (counit env))

_ev (L x e) env = return (F (\ d -> ev e (cobind (repair . counit) (czip d env))))

where repair (a, g) = (x, a) : g

_ev (e :@ e’) env = ev e env >>= \ (F f) ->

dist (cobind (ev e’) env) >>= \ d ->

f d

_ev (N n) env = return (I n)

_ev (e0 :+ e1) env = ev e0 env >>= \ (I n0) ->

ev e1 env >>= \ (I n1) ->

return (I (n0 + n1))

...

_ev TT env = return (B True)

_ev FF env = return (B False)

_ev (Not e) env = ev e env >>= \ (B b) ->

return (B (not b))

_ev (If e e0 e1) env = ev e env >>= \ (B b) ->

if b then ev e0 env else ev e1 env

T U, V V 34

T

• Evaluation cont’d:
instance DistEv LV Maybe where

ev (e0 ‘Fby‘ e1) env = ev e0 env >>= \ a ->

dist (cobind (ev e1) env) >>= \ d ->

return (fbyLV a d)

ev Nosig env = error

ev (e0 ‘Merge‘ e1) env = ev e0 env ‘handle‘ ev e1 env

testLVM :: Tm -> Int -> LV (Maybe (Val LV Maybe))

testLVM e n = cobind (ev e) (env0 n)

• Example:
sieve = Rec (L "sieve" (L "x" (

If (TT ‘Fby‘ FF)

(V "x")

(V "sieve" :@

(If ((V "x" ‘Mod‘ (first :@ V "x")) :/= N 0) (V "x") Nosig)))))

sieveMain = sieve :@ (pos :+ N 2)

T U, V V 35

T

Conclusions and future work

• A general framework for signal/flow based programming and for
semantics. Based on a well-understood mathematical
construction—comonad—, allowing generalizations from signal/flow
processing to more sophisticated implicit context based paradigms of
programming.

• Allows for modular simultaneous use of multiple notions of a context
via combinations of multiple comonads (e.g., the multiple dimensions
of Multidimensional Lucid) and for combinations of a context and an
effect via combinations of a comonad and a monad (e.g., the partiality
of Lustre/Lucid Synchrone).

• Allows for principled design of higher-order extensions for intensional
and dataflow languages.

• In progress: From discrete time to continuous time, from clock-tick
based to event based programming with signals.

T U, V V 36

