The essence of dataflow programming

Tarmo Uustalu
Varmo Vene

Teooriapäevad Kokel², 4.-6.2.2005

Motivation

- Following Moggi and Wadler, it is standard in programming and semantics to analyze various notions of computation with an effect as monads.
- But there is a need for both finer and more permissive mathematical abstractions to uniformly describe the numerous function-like concepts encountered in programming.
- Some proposals: Lawvere theories (Power, Plotkin), Freyd categories (Power, Robinson).
- In functional programming, Hughes invented Freyd categories independently of Power, Robinson under the name of arrow types and has been promoting them an abstraction especially handy in programming with signals/flows.
- This has been picked up; there is by now both a library and specialized syntax for arrows in Haskell, as well as an arrows-based library for functional reactive programming.
- But what about comonads? They have not found extensive use (some examples by Brookes and Geva, Kieburtz, but mostly artificial).

This talk

- Thesis: Used properly, comonads are exactly the right tool for programming signal/flow functions, accounting both for general signal functions and for causal ones (where the output at a given time can only depend on the input until that time).
- This extends Moggi's modular approach to language semantics to languages for implicit context based paradigms such as intensional programming in Lucid or synchronous dataflow programming in Lustre/Lucid Synchrone: context relying functions are interpreted as pure functions via a comonad translation.
For such languages, Moggi-style accounts have not been available thus far.

Outline

- Monads, monads in programming and semantics
- Freyd categories/arrow types and programming with stream functions
- Comonads for programming with stream functions, semantics
- A distributive law for programming with partial-stream functions, semantics

Monads

- A monad (in the Kleisli format) on a category C is given by a mapping $T:|C| \rightarrow|C|$ together with a $|C|$-indexed family η of maps $\eta_{A}: A \rightarrow T A$ (unit), and an operation $-^{\star}$ taking every map $k: A \rightarrow T B$ in C to a map $k^{\star}: T A \rightarrow T B$ (extension operation) such that
- for any $k: A \rightarrow T B, k^{\star} \circ \eta_{A}=k$,
$-\eta_{A}{ }^{\star}=\mathrm{id}_{T A}$,
- for any $k: A \rightarrow T B, \ell: B \rightarrow T C,\left(\ell^{\star} \circ k\right)^{\star}=\ell^{\star} \circ k^{\star}$.
- Any monad $\left(T, \eta,-^{\star}\right)$ defines a category C_{T} where $\left|C_{T}\right|=|C|$ and $\mathcal{C}_{T}(A, B)=C(A, T B),\left(\mathrm{id}_{T}\right)_{A}=\eta_{A}, \ell \circ_{T} k=\ell^{\star} \circ k$ (Kleisli category) and an identity-on-objects functor $J: C \rightarrow \mathcal{C}_{T}$ where $J f=\eta_{B} \circ f$ for $f: A \rightarrow B$.
- In programming and semantics, monads are used to model notions of computation with an effect; $T A$ is the type of computations of values of A.

An function with an effect from A to B is a map $A \rightarrow B$ in the Kleisli category, i.e., a map $A \rightarrow T B$ in the base category.

- Some examples applied in semantics:
- TA $=$ Maybe $A=A+1$, error (partiality), $T A=A+E$, exceptions,
- $T A=E \Rightarrow A$, environment,
- TA $=\operatorname{List} A=\mu X .1+A \times X$, non-determinism,
- TA $=S \Rightarrow A \times S$, state,
- $T A=(A \Rightarrow R) \Rightarrow R$, continuations,
- $T A=\mu X . A+(U \Rightarrow X)$, interactive input,
- TA $=\mu X . A+V \times X \cong A \times$ List V, interactive output,
$-T A=\mu X . A+F X$, the free monad over F,
$-T A=v X . A+F X$, the free completely iterative monad over F.

Monads in Haskell

- The monad class is defined in the Prelude:

```
class Monad t where
    return :: a -> t a
    (>>=) :: t a -> (a -> t b) -> t b
```

- The error monad:

```
instance Monad Maybe where
    return a = Just a
    Just a >>= k = k a
    Nothing >>= k = Nothing
errorM :: Maybe a
errorM = Nothing
handleM :: Maybe a -> Maybe a -> Maybe a
Nothing 'handleM` d = d
Just a 'handleM' _ = Just a
```

- The non-determinism monad:

```
instance Monad [] where
    return a = [a]
    [] >>= f = []
    (a : as) >>= f = f a ++ (as >>= f)
deadlockL :: [a]
deadlockL = []
choiceL :: [a] -> [a] -> [a]
as0 'choiceL` as1 = as0 ++ as1
```


Monadic semantics

- Syntax:

```
type Var = String
data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
    | N Int | Tm :+ Tm | ...
    | Tm :== Tm | ...
    | TT | FF | Not Tm | ... | If Tm Tm Tm
    -- specific for Maybe
    | Error | Tm 'Handle` Tm
    -- specific for []
    | Deadlock | Tm `Choice` Tm
```

- Semantic categories:

```
data Val t = I Int | B Bool | F (Val t -> t (Val t))
type Env t = [(Var, Val t)]
env0 :: Env t
env0 = []
```


- Evaluation:

```
class Monad t => MonadEv \(t\) where
    ev : : Tm -> Env t -> t (Val t)
_ev : : MonadEv t => Tm -> Env t -> t (Val t)
_ev (V x) env = return (unsafelookup x env)
_ev (L x e) env = return ( \(F(\backslash a \operatorname{ev} e((x, a): ~ e n v)))\)
_ev (e : @ e’) env = ev e env >>= \ (F f) ->
    ev e' env >>= \a ->
    f a
_ev ( \(N\) n) env = return ( I n)
_ev (e0 :+ e1) env = ev e0 env >>= \ (I n0) ->
    ev e1 env >>= \ (I n1) ->
    return ( \(I(n \theta+n 1)\) )
_ev TT env = return (B True )
_ev FF env = return ( B False)
_ev (Not e) env = ev e env >>= \\(B b) ->
    return (B (not b))
_ev (If e e@ e1) env = ev e env >>= \\(B) ->
    if \(b\) then ev e0 env else ev e1 env
```


- Evaluation cont'd:

```
instance MonadEv Maybe where
    ev Error env = errorM
    ev (e0 'Handle' e1) env = ev e@ env 'handleM` ev e1 env
    ev e env = _ev e env
testM :: Tm -> Maybe (Val Maybe)
testM = ev e env0
instance MonadEv [] where
    ev Deadlock env = deadlockL
    ev (e0 'Choice' e1) env = ev e@ env 'choiceL' ev e1 env
    ev e env = _ev e env
testL :: Tm -> [Val []]
testL = ev e env0
```


Freyd categories / arrow types

- Freyd categories are a generalization of Kleisli categories of strong monads.
- A symmetric premonoidal category is the same as a symmetric monoidal category except that the tensor is not required not be bifunctorial, only functorial in each of its two arguments separately. A $\operatorname{map} f: A \rightarrow B$ of such a category is called central if the two composites $A \otimes C \rightarrow B \otimes D$ agree and the two composites $C \otimes A \rightarrow D \otimes B$ agree for every map $g: C \rightarrow D$.
A Freyd category over a Cartesian category C is a symmetric premonoidal category \mathcal{K} together with an identity-on-objects functor $J: C \rightarrow \mathcal{K}$ that preserves the symmetric premonoidal structure of C on the nose and also preserves centrality.
- Freyd categories a.k.a. arrow types in Haskell (as in Control.Arrow):
class Arrow r where

```
pure :: (a -> b) -> r a b
(>>>) :: r a b -> r b c -> r a c
first :: r a b -> r (a, c) (b, c)
```

- Kleisli arrows as arrows:

```
newtype Kleisli t a b = Kleisli (a -> t b)
instance Monad t => Arrow (Kleisli t) where
    pure f = Kleisli (return . f)
    Kleisli k >>> Kleisli l = Kleisli ((>>= l) . k)
    first (Kleisli k) = Kleisli (\ (a, c) ->
        k a >>= \ b -> return (b, c))
```

- The general stream functions arrow type (to model transformers of signals in discrete time):
data Stream $\mathrm{a}=\mathrm{a}:<$ Stream a
-- coinductive

```
zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs
```

newtype SF a b = SF (Stream a -> Stream b)
instance Arrow SF where
pure $f=S F(m a p S f)$
SF k >>> SF l = SF (l . k)
first $\mathrm{SF} \mathrm{k}=\mathrm{SF}$ (uncurry zipS . (\backslash (as, ds) -> k as, ds) . unzipS)

- Delay:

```
fbySF :: a -> SF a a
fbySF a0 = SF ( \(\backslash\) as \(->\) a0 :< as)
```


Comonads

- Comonads are the formal dual of monads.
- A comonad on a category C is given by a mapping $D:|C| \rightarrow|C|$ together with a $|C|$-indexed family ε of maps $\varepsilon_{A}: D A \rightarrow A$ (counit), and an operation ${ }^{\dagger}{ }^{\dagger}$ taking every map $k: D A \rightarrow B$ in C to a map $k^{\dagger}: D A \rightarrow D B$ (coextension operation) such that
- for any $k: D A \rightarrow B, \varepsilon_{B} \circ k^{\dagger}=k$,
$-\varepsilon_{A}{ }^{\dagger}=\mathrm{id}_{D A}$,
- for any $k: D A \rightarrow B, \ell: D B \rightarrow C,\left(\ell \circ k^{\dagger}\right)^{\dagger}=\ell^{\dagger} \circ k^{\dagger}$.
- Any comonad $\left(D, \varepsilon,-^{\dagger}\right)$ defines a category $\left(C_{D}\right.$ where $\left|C_{D}\right|=|C|$ and $C_{D}(A, B)=C(D A, B),\left(\operatorname{id}_{D}\right)_{A}=\varepsilon_{A}, \ell \circ_{D} k=\ell \circ k^{\dagger}$ (coKleisli category) and an identity-on-objects functor $J: C \rightarrow C_{D}$ where $J f=f \circ \varepsilon_{A}$ for $f: A \rightarrow B$.
- Comonads should be usable to model notions of value in a context; $D A$ would be the type of contextually situated values of A.
A context-relying function from A to B would be a map $A \rightarrow B$ in the coKleisli category, i.e., a map $D A \rightarrow B$ in the base category.
- Some examples:
- $D A=A \times E$, the product comonad,
- $D A=\operatorname{Str} A=v X . A \times X$, the streams comonad,
- $D A=v X . A \times F X$, the cofree comonad over F,
- $D A=\mu X . A \times F A$, the cofree recursive comonad over F.

Comonads in Haskell

- The basic implementation:

```
class Comonad d where
    counit :: d a -> a
    cobind :: (d a -> b) -> d a -> d b
```

- The product comonad:
data With e a = a :- e
instance Comonad (With e) where
counit (a :- _) = a
cobind k d@(_ :- e) $=\mathrm{k}$ d :- e
- The streams comonad:

```
data Stream a = a :< Stream a -- coinductive
instance Comonad Stream where
    counit (a :< _) = a
    cobind k d@(_ :< as) = k d :< cobind k as
```


Comonads for general and causal stream functions

- Streams (signals in discrete time) are naturally isomorphic to functions from natural numbers: $\operatorname{Str} A \cong \mathrm{Nat} \Rightarrow A$.
- General stream functions $\operatorname{Str} A \rightarrow \operatorname{Str} B$ are thus in natural bijection with maps $\operatorname{Str} A \times N a t \rightarrow B$.
- Hence the values of A in context for general stream functions are $\operatorname{StrPos} A=\operatorname{Str} A \times$ Nat $\cong \mathrm{LVS} A=\operatorname{List} A \times A \times \operatorname{Str} A$.
A time point partitions a stream into its past (a list), present (a value) and future (a stream).
- The values of A in context for causal stream functions are $\operatorname{LV} A=\operatorname{List} A \times A \cong \mu X . A \times$ MaybeX.
This is the cofree recursive comonad over the Maybe functor.
- Streams and isomorphism of streams to functions from naturals:

```
data Stream a = a :< Stream a
```

str2fun :: Stream a -> Int -> a
fun2str :: (Int -> a) -> Stream a

```
- Streams with a marked position: values in a context for general stream functions:
```

data StrPos a = SP (Stream a) Int
instance Comonad StrPos where
counit (SP as i) = str2fun as i
cobind k (SP as i) = SP (fun2str (\ i' -> k (SP as i'))) i
runSP :: (StrPos a -> b) -> Stream a -> Stream b
runSP k as = runSP' k as 0
runSP' k as i = k (SP as i) :< runSP' k as (i + 1)

```
- Delay ("followed by") operation:
fbySP : : a -> StrPos a -> a
fbySP a (SP as 0) = a
fbySP _ (SP as \((i+1))=\) str2fun as \(i\)
- Summation:
```

sumSP :: Num a => StrPos a -> a
sumSP (SP as 0) = str2fun as 0
sumSP (SP as (i + 1)) = str2fun as (i + 1) + sumSP (SP as i)

```
- Compression (non-causal!):
```

compress :: StrPos a -> (a, a)
compress (SP as i) = (str2fun as (2 * i), str2fun as (2 * i + 1))

```
- List-value pairs, values in a context for causal stream functions:
```

data List a = Nil | List a :> a -- inductive
data LV a = List a := a
instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindP k az := k d where
cobindP k Nil = Nil
cobindP k (az :> a) = cobindP k az :> k (az := a)
runLV :: (LV a -> b) -> Stream a -> Stream b
runLV k (a :< as) = runLV' k Nil a as
runLV' k az a (a' :< as')
= k (az := a) :< runLV' k (az :> a) a' as'

```
- A feedback resolution combinator:
```

feedback :: (List (a, b) -> a -> b) -> (LV a -> b)
feedback k d = k abz a
where (abz := (a, _))
= cobind (pair counit (feedback k)) d

```
- Feedbacks can be run directly:
```

runbase :: (List (a, b) -> a -> b) -> Stream a -> Stream b
runbase k (a :< as) = runbase' k Nil a as
runbase' k abz a (a' :< as')
= b :< runbase' k (abz :> (a, b)) a' as'
where b = k abz a

```
- Feedbacks can also be composed directly:
```

compbase :: (List (a, b) -> a -> b)
-> (List $((a, b), c)->(a, b)->c)$
-> List (a, (b, c)) -> a -> (b, c)
compbase k le a
$=$ let
$e^{\prime}=\operatorname{fmap}(\backslash(a,(b, c))->(a, b)) e$
$e^{\prime \prime}=\operatorname{fmap}(\backslash(a,(b, c))->((a, b), c)) e$
b $=k e^{\prime} \mathrm{a}$
c $=1 \mathrm{e}^{\prime \prime}(\mathrm{a}, \mathrm{b})$
in (b, c)

```
- Delay:
```

fbyLV :: a -> LV a -> a
fbyLV a0 (Nil := _) = a0
fbyLV _ ((_ :> a’) := _) = a’

```
- Summation directly and with feedback:
```

sumLV :: Num a => LV a -> a
sumLV (Nil := a) = a
sumLV ((az' :> a') := a) = sumLV (az' := a') + a
sumbase : Num a => List (a, a) -> a -> a
sumbase Nil a = a
sumbase (_ :> (_, b)) a = b + a

```

\section*{Comonadic semantics of a dataflow language}
- Comonads with zipping:
```

class Comonad d => ComonadZip d where
czip :: d a -> d b -> d (a, b)
instance ComonadZip LV where
czip (az := a) (bz := b) = czipP az bz := (a, b)
where czipP Nil Nil = Nil
czipP (az :> a) (bz :> b) = czipP az bz :> (a, b)

```
- Syntax:
```

type Var = String
data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm | ...
| Tm :== Tm | ...
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm

```
- Semantic domains:
```

data Val d = I Int | B Bool | F (d (Val d) -> Val d)
type Env d = d [(Var, Val d)]
env0 :: Int -> Env LV
env0 n = env0P n := []
where envQP Q = Nil
env@P (n + 1) = envOP n :> []

```

\section*{- Evaluation:}
```

class ComonadZip d => ComonadEv d where
ev :: Tm -> Env d -> Val d
_ev :: ComonadEv d => Tm -> Env d -> Val d
_ev (V x) env = unsafelookup x (counit env)
_ev (L x e) env = F (\ d -> ev e (cobind (repair . counit) (czip d env)))
where repair (a, g) = (x, a) : g
_ev (e :@ e') env = case ev e env of
F f -> f (cobind (ev e') env)
_ev (N n) env = I n
_ev (e0 :+ e1) env = case ev e0 env of
I n0 -> case ev e1 env of
I n1 -> I (n1 + n2)
_ev TT env = B True
_ev FF env = B False
_ev (Not e) env = case ev e env of
B b -> B (not b)
_ev (If e e@ e1) env = case ev e env of
B b -> if b then ev e0 env else ev e1 env

```

\section*{- Evaluation cont'd:}
```

instance ComonadEv LV where
ev (e| 'Fby` e1) env = ev e@ env 'fbyLV' cobind (ev e1) env
ev e env = _ev e env
testLV :: Tm -> Int -> LV (Val LV)
testLV e n = cobind (ev e) (env@ n)

```
- Examples:
```

pos = Rec (L "pos" (N 0 `Fby` (V "pos" :+ N 1)))
sums = L "x" (Rec (L "sumx" (V "x" :+ (N 0 'Fby`V "sumx")))) diff = L "x" (V "x" :- (N 0`Fby`V "x")) fact = Rec (L "fact" (N 1 'Fby" (V "fact" :* (pos :+ N 1)))) fibo = Rec (L "fibo" (N 0`Fby`(V "fibo" :+ (N 1`Fby` V "fibo"))))

```

\section*{Distributive laws}
- Given a comonad \(\left(D, \varepsilon,-^{\dagger}\right)\) and a monad \(\left(T, \eta,-^{\star}\right)\) on a category \(C\), a distributive law of \(D\) over \(T\) is a natural transformation \(\lambda\) with components \(D T A \rightarrow T D A\) subject to four coherence conditions.
A distributive law of \(D\) over \(T\) defines a category \(C_{D, T}\) where \(\left|C_{D, T}\right|=|C|, C_{D, T}(A, B)=C(D A, T B),\left(\operatorname{id}_{D, T}\right)_{A}=\eta_{A} \circ \varepsilon_{A}\), \(\ell \circ_{D, T} k=l^{\star} \circ \lambda_{B} \circ k^{\dagger}\) for \(k: D A \rightarrow T B, \ell: D B \rightarrow T C\) (call it the biKleisli category), with inclusions to it from both the coKleisli category of \(D\) and Kleisli category of \(T\).

\section*{A distributive law for causal partial-stream functions}
- The type of partial streams (clocked signals in discrete time) over a type \(A\) is \(\operatorname{Str}(\operatorname{Maybe} A)\).
- (Strict) causal partial-stream functions are representable as biKleisli arrows of a distributive law of LV over Maybe.
- Distributive laws in Haskell:
```

class (Comonad d, Monad t) => Dist d t where
dist :: d (t a) -> t (d a)

```
- A distributive law between LV and Maybe:
```

instance Dist LV Maybe where

```
    dist (az := Nothing) = Nothing
    dist (az := Just a) = Just (filterJ az := a)
    where filterJ Nil = Nil
    filterJ (az :> Nothing) = filterJ az
    filterJ (az :> Just a) = filterJ az :> a
- Interpreting a biKleisli arrow as a partial-stream function:
runLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’
runLVM' k az Nothing (a’ :< as’)
\[
=\text { Nothing } \quad:<\text { runLVM' k az a' as' }
\]
runLVM' k az (Just a) (a' :< as')
= k (az := a) :< runLVM' k (az :> a) a' as'
- The 'when' operation from dataflow languages:
whenLVM :: LV (a, Bool) -> Maybe a
whenLVM (_ := (a, False)) = Nothing
whenLVM (_ := (a, True)) = Just a

\section*{Distributive law semantics of a clocked dataflow language}
- Syntax:
```

type Var = String
data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Int | Tm :+ Tm | ...
| Tm :== Tm | ...
| TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for LV
| Fby Tm Tm
-- specific for Maybe
| Nosig | Merge Tm Tm

```
- Semantic domains:
```

data Val d t = I Int | B Bool | F (d (Val d t) -> t (Val d t))
type Env d t = d [(Var, Val d t)]
env0 :: Int -> Env LV Maybe
env0 n = env0P n := []
where envOP 0 = Nil
envOP (n + 1) = env0P n :> []

```

\section*{- Evaluation:}
```

class Dist d t => DistEv d t where
ev :: Tm -> Env d t -> t (Val d t)
_ev :: DistEv d t => Tm -> Env d t -> t (Val d t)
_ev (V x) env = return (unsafelookup x (counit env))
_ev (L x e) env = return (F (\ d -> ev e (cobind (repair . counit) (czip d env))))
where repair (a, g) = (x, a) : g
_ev (e :@ e') env = ev e env >>= \ (F f) ->
dist (cobind (ev e') env) >>= \ d ->
f d
_ev (N n) env = return (I n)
_ev (e0 :+ e1) env = ev e0 env >>= \ (I n0) ->
ev e1 env >>= \ (I n1) ->
return (I (n0 + n1))
_ev TT env = return (B True)
_ev FF env = return (B False)
_ev (Not e) env = ev e env >>= \ (B b) ->
return (B (not b))
_ev (If e e0 e1) env = ev e env >>= \ (B b) ->
if b then ev e0 env else ev e1 env

```

\section*{- Evaluation cont'd:}
```

instance DistEv LV Maybe where
ev (e0 'Fby' e1) env = ev e0 env >>= \ a ->
dist (cobind (ev e1) env) >>= \ d ->
return (fbyLV a d)
ev Nosig env = error
ev (e0 'Merge` e1) env = ev e@ env 'handle` ev e1 env
testLVM :: Tm -> Int -> LV (Maybe (Val LV Maybe))
testLVM e n = cobind (ev e) (env0 n)

```
- Example:
```

sieve = Rec (L "sieve" (L "x" (
If (TT 'Fby` FF)
(V "x")
(V "sieve" :@
(If ((V "x" 'Mod" (first :@ V "x")) :/= N 0) (V "x") Nosig)))))

```
sieveMain = sieve :@ (pos :+ N 2)

\section*{Conclusions and future work}
- A general framework for signal/flow based programming and for semantics. Based on a well-understood mathematical construction-comonad-, allowing generalizations from signal/flow processing to more sophisticated implicit context based paradigms of programming.
- Allows for modular simultaneous use of multiple notions of a context via combinations of multiple comonads (e.g., the multiple dimensions of Multidimensional Lucid) and for combinations of a context and an effect via combinations of a comonad and a monad (e.g., the partiality of Lustre/Lucid Synchrone).
- Allows for principled design of higher-order extensions for intensional and dataflow languages.
- In progress: From discrete time to continuous time, from clock-tick based to event based programming with signals.```

