On 21 February at 2.15 p.m Faiz Ali Shah will defend his thesis "Extracting Information from App Reviews to Facilitate Software Development Activities" for obtaining the degree of Doctor of Philosophy (Computer Science).
Supervisors:
Prof. Dietmar Pfahl (Institute of Computer Science UT);
Res. fellow Kairit Sirts (Institute of Computer Science UT).
Opponents:
Prof. Alessandra Gorla (IMDEA Software Institute in Madrid, Spain);
PhD Sebastiano Panichella (Zurich University of Applied Science, Switzerland).
Summary:
For app developers, it is important to continuously evaluate the needs and expectations of their users to improve app quality. User reviews submitted to app marketplaces are regarded as a useful information source to re-access evolving user needs. The large volume of user reviews received every day requires automatic methods to find such information in user reviews. Text classification models can be used to categorize review information into types such as feature requests and bug reports, while automatic app feature extraction from user reviews can help in summarizing users’ sentiments at the level of app features. For classifying review information, we perform experiments to compare the performance of simple models using only lexical features to models with rich linguistic features and models built on deep learning architectures, i.e., Convolutional Neural Network (CNN). To investigate factors influencing the performance of automatic app feature extraction methods, i.e. rule-based and supervised machine learning, we first establish a baseline in a single experimental setting and then compare the performances in different experimental settings (i.e., varying annotated datasets and evaluation methods). Since the performance of supervised feature extraction methods is more sensitive than rule-based methods to (1) guidelines used to annotate app features in user reviews and (2) the size of the annotated data, we investigate their impact on the performance of supervised feature extraction models and suggest new annotation guidelines that have the potential to improve feature extraction performance. To make the research results of the thesis project also applicable for non-experts, we developed a proof-of-concept tool for comparing competing apps. The tool combines review classification and app feature extraction methods and has been evaluated by ten developers from industry who perceived it useful for improving the app quality.