On August 22 at 10.15 a.m., Indrek Sünter will defend his docoral thesis in physics "Design and characterisation of subsystems and software for ESTCube-1 nanosatellite" at the UT Physicum in room B103.
Supervisor:
Professor Mart Noorma
Opponents:
Prof Linas Bukauskas, Vilnius University (Lithuania);
Rauno Gordon, Ph.D, Tallinn University of Technology (Estonia).
Summary:
Electrical solar wind sail (E-sail) technology would enable propellantless interplanetary navigation of space probes, using just solar wind and electricity. One of the main challenges of the technology is E-sail tether deployment, for which the space probe would be spun to a high angular rate. Launched on May 7th, 2013, the Estonian student satellite ESTCube-1 was the first spacecraft with an E-sail experiment payload. While the satellite was successfully spun to the spin rate necessary for the experiment, the motorised reel technology used on the payload proved immature for tether deployment. ESTCube-1 spin-up and payload control were enabled by the spacecraft on-board computer. This thesis is focused on the results of the development and in-orbit validation of the on-board computer and its interfaces to other related systems on the satellite. The on-board computer collected measurements from spacecraft attitude sensors, controlled its magnetic torquers, mediated camera images and stored telemetry from various subsystems for later transmission. The on-board computer also toggled the tether reel motor, electron emitters and controlled the high voltage supply for the E-sail tether. Throughout the two-year lifetime of the spacecraft, no mission-critical issues were encountered in the operation of the on-board computer or its interfaces. The ESTCube-1 mission successfully improved the technological readiness of E-sail components for future missions.