22. septembril kell 14.15 Narva mnt 18–2049 kaitseb Ilya Kuzovkin oma dissertatsiooni „Understanding Information Processing in Human Brain by Interpreting Machine Learning Models“ („Inimaju arvutuslike protsesside mõistmine masinõppe mudelite tõlgendamise kaudu“) filosoofiadoktori (informaatika) kraadi saamiseks.
Juhendaja:
prof Raul Vicente (TÜ arvutiteaduse instituut).
Oponendid:
prof Tim Kietzmann (Radboudi Ülikool, Holland);
dr Fabian Sinz (Tübingeni Ülikool, Saksamaa).
Kokkuvõte
Modelleerimine on inimkonna põline viis keerulistest nähtustest arusaamiseks. Planeetide liikumise mudel, gravitatsiooni mudel ja osakestefüüsika standardmudel on näited selle lähenemise edukusest. Neuroteaduses on olemas kaks viisi mudelite loomiseks: traditsiooniline hüpoteesipõhine lähenemine, mille puhul kõigepealt mudel sõnastatakse ja alles siis valideeritakse andmete peal; ja uuem andmepõhine lähenemine, mis toetub masinõpele, et sõnastada mudeleid automaatselt. Hüpoteesipõhine viis annab täieliku mõistmise sellest, kuidas mudel töötab, aga nõuab aega, kuna iga hüpotees peab olema sõnastatud ja valideeritud käsitsi. Andmepõhine lähenemine toetub ainult andmetele ja arvutuslikele ressurssidele mudelite otsimisel, aga ei seleta kuidas täpselt mudel jõuab oma tulemusteni. Me väidame, et neuroandmestike suur hulk ja nende mahu kiire kasv nõuab andmepõhise lähenemise laiemat kasutuselevõttu neuroteaduses, nihkes uurija rolli mudelite tööprintsiipide tõlgendamisele.
Doktoritöö koosneb kolmest näitest neuroteaduse teadmisi avastamisest masinõppe tõlgendamismeetodeid kasutades. Esimeses uuringus tõlgendatava mudeli abiga me kirjeldame millised ajas muutuvad sageduskomponendid iseloomustavad inimese ajusignaali visuaalsete objektide tuvastamise ülesande puhul. Teises uuringus võrdleme omavahel signaale inimese aju ventraalses piirkonnas ja konvolutsiooniliste tehisnärvivõrkude aktivatsioone erinevates kihtides. Säärane võrdlus võimaldas meil kinnitada hüpoteesi, et mõlemad süsteemid kasutavad hierarhilist struktuuri. Viimane näide kasutab topoloogiat säilitavat mõõtmelisuse vähendamise ja visualiseerimise meetodit, et näha, millised ajusignaalid ja mõtteseisundid on üksteisele sarnased. Viimased tulemused masinõppes ja tehisintellektis näitasid et mõned mehhanismid meie ajus on sarnased mehhanismidega, milleni jõuavad õppimise käigus masinõppe algoritmid. Oma tööga me rõhutame masinõppe mudelite tõlgendamise tähtsust selliste mehhanismide avastamiseks.