28. augustil kell 14.30 kaitseb Rihhard Nadel matemaatika erialal doktoritööd “Big slices of the unit ball in Banach spaces” (Banachi ruumi ühikkera suurtest viiludest).
Juhendajad:
vanemteadur Rainis Haller, PhD, Tartu Ülikool
teadur Johann Langemets, PhD, Tartu Ülikool
dotsent Vegard Lima, Dr Scient., Agderi Ülikool (Norra)
Oponendid:
professor Vladimir Kadets, DSc, Kharkiv V. N. Karazin National University (Ukraine)
dotsent Antonín Procházka, PhD, University of Franche-Comté (France)
Kokkuvõte
Banachi ruumide geomeetrias on viimastel aastatel palju tähelepanu saanud diameeter-2 omadused, mis kirjeldavad selliseid Banachi ruume, kus ühikkera mistahes viilu diameeter on suurima võimaliku väärtusega ehk kaks. Selline omadus on näiteks klassikalistel Banachi ruumidel c0, ℓ∞, C[0,1], L1[0,1] ja L∞[0,1]. Refleksiivsed ruumid, erijuhul Hilberti ruumid, või separaablid kaasruumid, näiteks ℓ1, on Radon—Nikodými omadusega, mistõttu neis leidub kuitahes väikese läbimõõduga viile ja seega kõnealust omadust pole. Diameeter-2 omaduste suuna süstemaatilise uurimise käivitasid 2013. aastal T. A. Abrahamsen, V. Lima ja O. Nygaard. Käesoleva väitekirja põhieesmärk on süsteemselt uurida diameeter-2 omaduste tugevdusi ja nendega seotud mõisteid, nagu näiteks normi karedus ning Daugaveti tihkuse indeks. Töös kirjeldatakse täielikult ära erinevate tugevate diameeter-2 omaduste, karedate normide ja Daugaveti tihkuse indeksite stabiilsustulemused absoluutse normiga summaruumide ja komponentruumide vahel. Samuti tehakse kindlaks, millistel tingimustel vastavad omadused kanduvad ülemruumilt alamruumile ja vastupidi. Uuritakse tingimusi, mida meetriline ruum peab rahuldama, et vastaval Lipschitzi ruumil oleks *-nõrk sümmeetriline tugev diameeter-2 omadus. Töös üldistatakse kvantitatiivselt ka varasemalt teadaolevaid operaatorruumide kareduse tulemusi. Daugaveti tihkuse indeksi uurimise tulemusena vastatakse eitavalt Y. Ivakhno poolt 2006. aastal püstitatud küsimusele lokaalse diameeter-2 omaduse ja r-suurte viilude omaduse samaväärsuse kohta.